Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206621

RESUMEN

Cellular trafficking between organelles is typically assured by short motifs that contact carrier proteins to transport them to their destination. Ubiquitin E3 ligase RING finger protein 13 (RNF13), a regulator of proliferation, apoptosis, and protein trafficking, localizes to endolysosomal compartments through the binding of a dileucine motif to clathrin adaptor protein complex AP-3. Mutations within this motif reduce the ability of RNF13 to interact with AP-3. Here, our study shows the discovery of a glutamine-based motif that resembles a tyrosine-based motif within RNF13's C-terminal region that binds to the clathrin adaptor protein complex AP-1, notably without a functional interaction with AP-3. Using biochemical, molecular, and cellular approaches in HeLa cells, our study demonstrates that a RNF13 dileucine variant uses an AP-1-dependent pathway to be exported from the Golgi towards the endosomal compartment. Overall, this study provides mechanistic insights into the alternate route used by variant of RNF13's dileucine sorting motif.

2.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768299

RESUMEN

For the past several years, fundamental research on Sigma-1R (S1R) protein has unveiled its necessity for maintaining proper cellular homeostasis through modulation of calcium and lipid exchange between the endoplasmic reticulum (ER) and mitochondria, ER-stress response, and many other mechanisms. Most of these processes, such as ER-stress response and autophagy, have been associated with neuroprotective roles. In fact, improving these mechanisms using S1R agonists was beneficial in several brain disorders including neurodegenerative diseases. In this review, we will examine S1R subcellular localization and describe S1R-associated biological activity within these specific compartments, i.e., the Mitochondrion-Associated ER Membrane (MAM), ER-Lipid Droplet (ER-LD) interface, ER-Plasma Membreane (ER-PM) interface, and the Nuclear Envelope (NE). We also discussed how the dysregulation of these pathways contributes to neurodegenerative diseases, while highlighting the cellular mechanisms and key binding partners engaged in these processes.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Enfermedades Neurodegenerativas , Neuroprotección , Receptores sigma , Humanos , Autofagia/genética , Autofagia/fisiología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/fisiología , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Neuroprotección/genética , Neuroprotección/fisiología , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Receptores sigma/genética , Receptores sigma/metabolismo , Receptor Sigma-1
3.
Cell Host Microbe ; 30(11): 1615-1629.e5, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36323315

RESUMEN

Gut-microbiota membership is associated with diverse neuropsychological outcomes, including substance use disorders (SUDs). Here, we use mice colonized with Citrobacter rodentium or the human γ-Proteobacteria commensal Escherichia coli HS as a model to examine the mechanistic interactions between gut microbes and host responses to cocaine. We find that cocaine exposure increases intestinal norepinephrine levels that are sensed through the bacterial adrenergic receptor QseC to promote intestinal colonization of γ-Proteobacteria. Colonized mice show enhanced host cocaine-induced behaviors. The neuroactive metabolite glycine, a bacterial nitrogen source, is depleted in the gut and cerebrospinal fluid of colonized mice. Systemic glycine repletion reversed, and γ-Proteobacteria mutated for glycine uptake did not alter the host response to cocaine. γ-Proteobacteria modulated glycine levels are linked to cocaine-induced transcriptional plasticity in the nucleus accumbens through glutamatergic transmission. The mechanism outline here could potentially be exploited to modulate reward-related brain circuits that contribute to SUDs.


Asunto(s)
Cocaína , Microbioma Gastrointestinal , Ratones , Humanos , Animales , Proteobacteria , Citrobacter rodentium , Bacterias , Escherichia coli , Glicina
4.
Proc Natl Acad Sci U S A ; 119(31): e2204901119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881790

RESUMEN

Although a wide variety of genetic tools has been developed to study learning and memory, the molecular basis of memory encoding remains incompletely understood. Here, we undertook an unbiased approach to identify novel genes critical for memory encoding. From a large-scale, in vivo mutagenesis screen using contextual fear conditioning, we isolated in mice a mutant, named Clueless, with spatial learning deficits. A causative missense mutation (G434V) was found in the voltage-gated potassium channel, subfamily C member 3 (Kcnc3) gene in a region that encodes a transmembrane voltage sensor. Generation of a Kcnc3G434V CRISPR mutant mouse confirmed this mutation as the cause of the learning defects. While G434V had no effect on transcription, translation, or trafficking of the channel, electrophysiological analysis of the G434V mutant channel revealed a complete loss of voltage-gated conductance, a broadening of the action potential, and decreased neuronal firing. Together, our findings have revealed a role for Kcnc3 in learning and memory.


Asunto(s)
Hipocampo , Discapacidades para el Aprendizaje , Memoria , Mutación Missense , Canales de Potasio Shaw , Potenciales de Acción/fisiología , Animales , Hipocampo/fisiopatología , Discapacidades para el Aprendizaje/genética , Ratones , Ratones Endogámicos C57BL , Canales de Potasio Shaw/genética , Canales de Potasio Shaw/fisiología
5.
Cells ; 10(11)2021 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-34831286

RESUMEN

Developmental and epileptic encephalopathies (DEE) are rare and serious neurological disorders characterized by severe epilepsy with refractory seizures and a significant developmental delay. Recently, DEE73 was linked to genetic alterations of the RNF13 gene, which convert positions 311 or 312 in the RNF13 protein from leucine to serine or proline, respectively (L311S and L312P). Using a fluorescence microscopy approach to investigate the molecular and cellular mechanisms affected by RNF13 protein variants, the current study shows that wild-type RNF13 localizes extensively with endosomes and lysosomes, while L311S and L312P do not extensively colocalize with the lysosomal marker Lamp1. Our results show that RNF13 L311S and L312P proteins affect the size of endosomal vesicles along with the temporal and spatial progression of fluorescently labeled epidermal growth factor, but not transferrin, in the endolysosomal system. Furthermore, GST-pulldown and co-immunoprecipitation show that RNF13 variants disrupt association with AP-3 complex. Knockdown of AP-3 complex subunit AP3D1 alters the lysosomal localization of wild-type RNF13 and similarly affects the size of endosomal vesicles. Importantly, our study provides a first step toward understanding the cellular and molecular mechanism altered by DEE73-associated genetic variations of RNF13.


Asunto(s)
Complejo 3 de Proteína Adaptadora/metabolismo , Endosomas/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Secuencias de Aminoácidos , Factor de Crecimiento Epidérmico/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Lisosomas/metabolismo , Unión Proteica , Transferrina/metabolismo , Ubiquitina-Proteína Ligasas/genética
6.
Front Neurosci ; 14: 698, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760242

RESUMEN

The consequence of repeated cocaine exposure and prolonged abstinence on glutamate receptor expression in the nucleus accumbens has been extensively studied. However, the early effects of cocaine on NMDAR signaling remain unknown. NMDAR signaling depends on the subunit composition, subcellular localization, and the interaction with proteins at the postsynaptic density (PSD), where NMDARs and other proteins form supercomplexes that are responsible for the signaling pathways activated by NMDAR-induced Ca2+ influx. Here, we investigated the effect of cocaine on NMDAR subunit composition and subcellular localization after both intraperitoneal non-contingent cocaine and response-contingent intravenous cocaine self-administration in mice. We found that repeated cocaine exposure, regardless of the route or contingency of drug administration, decreases NMDAR interactions with the PSD and synaptic lipid rafts in the accumbens shell and dorsal striatum. We provide evidence that cocaine triggers an early redistribution of NMDARs from synaptic to extrasynaptic sites, and that this adaptation has implications in the activation of downstream signaling pathways. Thus, consistent with a loss of NMDAR function, cocaine-induced ERK phosphorylation is attenuated. Because early NMDAR activity contributes to the initiation of lasting addiction-relevant neuroadaptations, these data may hold clues into cellular mechanisms responsible for the development of cocaine addiction.

7.
Mol Psychiatry ; 25(11): 2832-2843, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-30038231

RESUMEN

Recent findings from in vivo-imaging and human post-mortem tissue studies in schizophrenic psychosis (SzP), have demonstrated functional and molecular changes in hippocampal subfields that can be associated with hippocampal hyperexcitability. In this study, we used a subfield-specific GluN1 knockout mouse with a disease-like molecular perturbation expressed only in hippocampal dentate gyrus (DG) and assessed its association with hippocampal physiology and psychosis-like behaviors. First, we used whole-cell patch-clamp recordings to measure the physiological changes in hippocampal subfields and cFos immunohistochemistry to examine cellular excitability. DG-GluN1 KO mice show CA3 cellular hyperactivity, detected using two approaches: (1) increased excitatory glutamate transmission at mossy fibers (MF)-CA3 synapses, and (2) an increased number of cFos-activated pyramidal neurons in CA3, an outcome that appears to project downstream to CA1 and basolateral amygdala (BLA). Furthermore, we examined psychosis-like behaviors and pathological memory processing; these show an increase in fear conditioning (FC), a reduction in prepulse inhibition (PPI) in the KO animal, along with a deterioration in memory accuracy with Morris Water Maze (MWM) and reduced social memory (SM). Moreover, with DREADD vectors, we demonstrate a remarkably similar behavioral profile when we induce CA3 hyperactivity. These hippocampal subfield changes could provide the basis for the observed increase in human hippocampal activity in SzP, based on the shared DG-specific GluN1 reduction. With further characterization, these animal model systems may serve as targets to test psychosis mechanisms related to hippocampus and assess potential hippocampus-directed treatments.


Asunto(s)
Región CA3 Hipocampal/fisiopatología , Giro Dentado/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Trastornos Psicóticos/fisiopatología , Receptores de N-Metil-D-Aspartato/deficiencia , Animales , Región CA3 Hipocampal/citología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Células Piramidales
8.
Mol Psychiatry ; 25(3): 680-691, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-29880884

RESUMEN

Drug-induced enhanced dopamine (DA) signaling in the brain is a canonical mechanism that initiates addiction processes. However, indirect evidence suggests that cocaine also triggers non-canonical, DA-independent, mechanisms that contribute to behavioral responses to cocaine, including psychomotor sensitization and cocaine self-administration. Identifying these mechanisms and determining how they are initiated is fundamental to further our understanding of addiction processes. Using physiologically relevant in vitro tractable models, we found that cocaine-induced hypoactivity of nucleus accumbens shell (NAcSh) medium spiny neurons (MSNs), one hallmark of cocaine addiction, is independent of DA signaling. Combining brain slice studies and site-directed mutagenesis in HEK293T cells, we found that cocaine binding to intracellular sigma-1 receptor (σ1) initiates this mechanism. Subsequently, σ1 binds to Kv1.2 potassium channels, followed by accumulation of Kv1.2 in the plasma membrane, thereby depressing NAcSh MSNs firing. This mechanism is specific to D1 receptor-expressing MSNs. Our study uncovers a mechanism for cocaine that bypasses DA signaling and leads to addiction-relevant neuroadaptations, thereby providing combinatorial strategies for treating stimulant abuse.


Asunto(s)
Cocaína/farmacología , Núcleo Accumbens/efectos de los fármacos , Trastornos Relacionados con Sustancias/fisiopatología , Animales , Cocaína/metabolismo , Trastornos Relacionados con Cocaína/metabolismo , Dopamina/metabolismo , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Autoadministración
9.
Front Neurosci ; 13: 1186, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31780884

RESUMEN

The sigma-1 receptor (σ1R) is an endoplasmic reticulum (ER)-resident chaperone protein that acts like an inter-organelle signaling modulator. Among its several functions such as ER lipid metabolisms/transports and indirect regulation of genes transcription, one of its most intriguing feature is the ability to regulate the function and trafficking of a variety of functional proteins. To date, and directly relevant to the present review, σ1R has been found to regulate both voltage-gated ion channels (VGICs) belonging to distinct superfamilies (i.e., sodium, Na+; potassium, K+; and calcium, Ca2+ channels) and non-voltage-gated ion channels. This regulatory function endows σ1R with a powerful capability to fine tune cells' electrical activity and calcium homeostasis-a regulatory power that appears to favor cell survival in pathological contexts such as stroke or neurodegenerative diseases. In this review, we present the current state of knowledge on σ1R's role in the regulation of cellular electrical activity, and how this seemingly adaptive function can shift cell homeostasis and contribute to the development of very distinct chronic pathologies such as psychostimulant abuse and tumor cell growth in cancers.

10.
Nat Med ; 24(9): 1482, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29934536

RESUMEN

In the version of this article originally published, a URL provided in the Methods section was incorrect. The URL had a solidus at the end but should have appeared as http://www.nature.com/authors/policies/image.html. The error has been corrected in the PDF and HTML versions of this article.

11.
Nat Med ; 24(5): 658-666, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29662202

RESUMEN

Major depressive disorder (MDD) is considered a 'circuitopathy', and brain stimulation therapies hold promise for ameliorating MDD symptoms, including hippocampal dysfunction. It is unknown whether stimulation of upstream hippocampal circuitry, such as the entorhinal cortex (Ent), is antidepressive, although Ent stimulation improves learning and memory in mice and humans. Here we show that molecular targeting (Ent-specific knockdown of a psychosocial stress-induced protein) and chemogenetic stimulation of Ent neurons induce antidepressive-like effects in mice. Mechanistically, we show that Ent-stimulation-induced antidepressive-like behavior relies on the generation of new hippocampal neurons. Thus, controlled stimulation of Ent hippocampal afferents is antidepressive via increased hippocampal neurogenesis. These findings emphasize the power and potential of Ent glutamatergic afferent stimulation-previously well-known for its ability to influence learning and memory-for MDD treatment.


Asunto(s)
Antidepresivos/uso terapéutico , Giro Dentado/patología , Corteza Entorrinal/patología , Animales , Conducta Animal , Enfermedad Crónica , Dendritas/patología , Glutamatos/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/metabolismo , Red Nerviosa/patología , Neurogénesis , Peroxinas/deficiencia , Peroxinas/metabolismo , Estrés Psicológico/complicaciones
12.
Handb Exp Pharmacol ; 244: 109-130, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28275909

RESUMEN

The sigma-1 receptor (Sig-1R), via interaction with various proteins, including voltage-gated and ligand-gated ion channels (VGICs and LGICs), is involved in a plethora of neuronal functions. This capability to regulate a variety of ion channel targets endows the Sig-1R with a powerful capability to fine tune neuronal excitability, and thereby the transmission of information within brain circuits. This versatility may also explain why the Sig-1R is associated to numerous diseases at both peripheral and central levels. To date, how the Sig-1R chooses its targets and how the combinations of target modulations alter overall neuronal excitability is one of the challenges in the field of Sig-1R-dependent regulation of neuronal activity. Here, we will describe and discuss the latest findings on Sig-1R-dependent modulation of VGICs and LGICs, and provide hypotheses that may explain the diverse excitability outcomes that have been reported so far.


Asunto(s)
Sinapsis Eléctricas/metabolismo , Neuronas/metabolismo , Receptores sigma/metabolismo , Transmisión Sináptica , Potenciales de Acción , Animales , Canales de Calcio/metabolismo , Humanos , Activación del Canal Iónico , Canales Iónicos Activados por Ligandos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Receptor Sigma-1
13.
J Vis Exp ; (112)2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27341060

RESUMEN

Whole-cell patch-clamp recording is an electrophysiological technique that allows the study of the electrical properties of a substantial part of the neuron. In this configuration, the micropipette is in tight contact with the cell membrane, which prevents current leakage and thereby provides more accurate ionic current measurements than the previously used intracellular sharp electrode recording method. Classically, whole-cell recording can be performed on neurons in various types of preparations, including cell culture models, dissociated neurons, neurons in brain slices, and in intact anesthetized or awake animals. In summary, this technique has immensely contributed to the understanding of passive and active biophysical properties of excitable cells. A major advantage of this technique is that it provides information on how specific manipulations (e.g., pharmacological, experimenter-induced plasticity) may alter specific neuronal functions or channels in real-time. Additionally, significant opening of the plasma membrane allows the internal pipette solution to freely diffuse into the cytoplasm, providing means for introducing drugs, e.g., agonists or antagonists of specific intracellular proteins, and manipulating these targets without altering their functions in neighboring cells. This article will focus on whole-cell recording performed on neurons in brain slices, a preparation that has the advantage of recording neurons in relatively well preserved brain circuits, i.e., in a physiologically relevant context. In particular, when combined with appropriate pharmacology, this technique is a powerful tool allowing identification of specific neuroadaptations that occurred following any type of experiences, such as learning, exposure to drugs of abuse, and stress. In summary, whole-cell patch-clamp recordings in brain slices provide means to measure in ex vivo preparation long-lasting changes in neuronal functions that have developed in intact awake animals.


Asunto(s)
Encéfalo/fisiología , Técnicas de Placa-Clamp/métodos , Animales , Ratones , Vías Nerviosas/fisiología , Neuronas/fisiología , Vigilia/fisiología
15.
Neuropsychopharmacology ; 41(2): 464-76, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26068728

RESUMEN

Repeated exposure to psychostimulant drugs such as cocaine or amphetamine can promote drug-seeking and -taking behavior. In rodent addiction models, persistent changes in excitatory glutamatergic neurotransmission in the nucleus accumbens (NAc) appear to drive this drug-induced behavioral plasticity. To study whether changes in glutamatergic signaling are shared between or exclusive to specific psychostimulant drugs, we examined synaptic transmission from mice following repeated amphetamine or cocaine administration. Synaptic transmission mediated by AMPA-type glutamate receptors was potentiated in the NAc shell 10-14 days following repeated amphetamine or cocaine treatment. This synaptic enhancement was depotentiated by re-exposure to amphetamine or cocaine. By contrast, in the NAc core only repeated cocaine exposure enhanced synaptic transmission, which was subsequently depotentiated by an additional cocaine but not amphetamine injection during drug abstinence. To better understand the drug-induced depotentiation, we replicated these in vivo findings using an ex vivo model termed 'challenge in the bath,' and showed that drug-induced decreases in synaptic strength occur rapidly (within 30 min) and require activation of metabotropic glutamate receptor 5 (mGluR5) and protein synthesis in the NAc shell, but not NAc core. Overall, these data demonstrate the specificity of neuronal circuit changes induced by amphetamine, introduce a novel method for studying drug challenge-induced plasticity, and define NAc shell medium spiny neurons as a primary site of persistent AMPA-type glutamate receptor plasticity by two widely used psychostimulant drugs.


Asunto(s)
Anfetamina/farmacología , Fármacos del Sistema Nervioso Central/farmacología , Cocaína/farmacología , Plasticidad Neuronal/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Receptores AMPA/metabolismo , Animales , Masculino , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Psicotrópicos/farmacología , Técnicas de Cultivo de Tejidos
16.
Nat Rev Neurosci ; 16(3): 173-84, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25697160

RESUMEN

Exposure to drugs of abuse, such as cocaine, leads to plastic changes in the activity of brain circuits, and a prevailing view is that these changes play a part in drug addiction. Notably, there has been intense focus on drug-induced changes in synaptic excitability and much less attention on intrinsic excitability factors (that is, excitability factors that are remote from the synapse). Accumulating evidence now suggests that intrinsic factors such as K+ channels are not only altered by cocaine but may also contribute to the shaping of the addiction phenotype.


Asunto(s)
Conducta Adictiva/diagnóstico , Encéfalo/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Animales , Conducta Adictiva/genética , Conducta Adictiva/psicología , Humanos
17.
J Neurosci ; 35(8): 3537-43, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25716852

RESUMEN

Previous studies suggest that pharmacological or molecular activation of the nucleus accumbens shell (AcbSh) facilitates extinction of cocaine-seeking behavior. However, overexpression of CREB, which increases excitability of AcbSh neurons, enhances cocaine-seeking behavior while producing depression-like behavior in tests of mood. These discrepancies may reflect activity in differential AcbSh outputs, including those to the lateral hypothalamus (LH), a target region known to influence addictive behavior and mood. Presently, it is unknown whether there is a causal link between altered activity in the AcbSh-LH pathway and changes in the motivation for cocaine. In this study, we used an optogenetics approach to either globally stimulate AcbSh neurons or to selectively stimulate AcbSh terminal projections in the LH, in rats self-administering cocaine. We found that stimulation of the AcbSh-LH pathway enhanced the motivation to self-administer cocaine in progressive ratio testing, and led to long-lasting facilitation of cocaine-seeking behavior during extinction tests conducted after withdrawal from cocaine self-administration. In contrast, global AcbSh stimulation reduced extinction responding. We compared these opposing motivational effects with effects on mood using the forced swim test, where both global AcbSh neuron and selective AcbSh-LH terminal stimulation facilitated depression-like behavioral despair. Together, these findings suggest that the AcbSh neurons convey complex, pathway-specific modulation of addiction and depression-like behavior, and that these motivation and mood phenomenon are dissociable.


Asunto(s)
Trastornos Relacionados con Cocaína/fisiopatología , Comportamiento de Búsqueda de Drogas , Área Hipotalámica Lateral/fisiopatología , Motivación , Núcleo Accumbens/fisiopatología , Afecto , Animales , Cocaína/farmacología , Extinción Psicológica , Área Hipotalámica Lateral/citología , Masculino , Vías Nerviosas/citología , Vías Nerviosas/fisiopatología , Neuronas/fisiología , Núcleo Accumbens/citología , Optogenética , Ratas , Ratas Sprague-Dawley
18.
Science ; 342(6165): 1508-12, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24357318

RESUMEN

The inbred mouse C57BL/6J is the reference strain for genome sequence and for most behavioral and physiological phenotypes. However, the International Knockout Mouse Consortium uses an embryonic stem cell line derived from a related C57BL/6N substrain. We found that C57BL/6N has a lower acute and sensitized response to cocaine and methamphetamine. We mapped a single causative locus and identified a nonsynonymous mutation of serine to phenylalanine (S968F) in Cytoplasmic FMRP interacting protein 2 (Cyfip2) as the causative variant. The S968F mutation destabilizes CYFIP2, and deletion of the C57BL/6N mutant allele leads to acute and sensitized cocaine-response phenotypes. We propose that CYFIP2 is a key regulator of cocaine response in mammals and present a framework to use mouse substrains to identify previously unknown genes and alleles regulating behavior.


Asunto(s)
Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/psicología , Cocaína/administración & dosificación , Comportamiento de Búsqueda de Drogas , Proteínas del Tejido Nervioso/fisiología , Proteínas Adaptadoras Transductoras de Señales , Sustitución de Aminoácidos , Animales , Estimulantes del Sistema Nervioso Central/administración & dosificación , Metanfetamina/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Mutación , Proteínas del Tejido Nervioso/genética , Fenilalanina/genética , Polimorfismo de Nucleótido Simple , Desempeño Psicomotor/efectos de los fármacos , Sitios de Carácter Cuantitativo , Serina/genética
19.
J Neurosci ; 33(10): 4295-307, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23467346

RESUMEN

The transcription factor ΔFosB and the brain-enriched calcium/calmodulin-dependent protein kinase II (CaMKIIα) are induced in the nucleus accumbens (NAc) by chronic exposure to cocaine or other psychostimulant drugs of abuse, in which the two proteins mediate sensitized drug responses. Although ΔFosB and CaMKIIα both regulate AMPA glutamate receptor expression and function in NAc, dendritic spine formation on NAc medium spiny neurons (MSNs), and locomotor sensitization to cocaine, no direct link between these molecules has to date been explored. Here, we demonstrate that ΔFosB is phosphorylated by CaMKIIα at the protein-stabilizing Ser27 and that CaMKII is required for the cocaine-mediated accumulation of ΔFosB in rat NAc. Conversely, we show that ΔFosB is both necessary and sufficient for cocaine induction of CaMKIIα gene expression in vivo, an effect selective for D1-type MSNs in the NAc shell subregion. Furthermore, induction of dendritic spines on NAc MSNs and increased behavioral responsiveness to cocaine after NAc overexpression of ΔFosB are both CaMKII dependent. Importantly, we demonstrate for the first time induction of ΔFosB and CaMKII in the NAc of human cocaine addicts, suggesting possible targets for future therapeutic intervention. These data establish that ΔFosB and CaMKII engage in a cell-type- and brain-region-specific positive feedforward loop as a key mechanism for regulating the reward circuitry of the brain in response to chronic cocaine.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Trastornos Relacionados con Cocaína/patología , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Núcleo Accumbens/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Adolescente , Adulto , Anciano , Análisis de Varianza , Animales , Benzazepinas/farmacología , Calcio/metabolismo , Inmunoprecipitación de Cromatina , Trastornos Relacionados con Cocaína/metabolismo , Estudios de Cohortes , Antagonistas de Dopamina/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Vectores Genéticos/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Núcleo Accumbens/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteínas Proto-Oncogénicas c-fos/genética , Ratas , Salicilamidas/farmacología , Serina/metabolismo , Adulto Joven
20.
Cell ; 152(1-2): 236-47, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23332758

RESUMEN

The sigma-1 receptor (Sig-1R), an endoplasmic reticulum (ER) chaperone protein, is an interorganelle signaling modulator that potentially plays a role in drug-seeking behaviors. However, the brain site of action and underlying cellular mechanisms remain unidentified. We found that cocaine exposure triggers a Sig-1R-dependent upregulation of D-type K(+) current in the nucleus accumbens (NAc) that results in neuronal hypoactivity and thereby enhances behavioral cocaine response. Combining ex vivo and in vitro studies, we demonstrated that this neuroadaptation is caused by a persistent protein-protein association between Sig-1Rs and Kv1.2 channels, a phenomenon that is associated to a redistribution of both proteins from intracellular compartments to the plasma membrane. In conclusion, the dynamic Sig-1R-Kv1.2 complex represents a mechanism that shapes neuronal and behavioral response to cocaine. Functional consequences of Sig-1R binding to K(+) channels may have implications for other chronic diseases where maladaptive intrinsic plasticity and Sig-1Rs are engaged.


Asunto(s)
Cocaína/administración & dosificación , Canal de Potasio Kv.1.2/metabolismo , Plasticidad Neuronal , Núcleo Accumbens/metabolismo , Receptores sigma/metabolismo , Animales , Comportamiento de Búsqueda de Drogas , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores sigma/genética , Receptor Sigma-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...