Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1174, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980390

RESUMEN

TAZ::CAMTA1 is a fusion protein found in over 90% of Epithelioid Hemangioendothelioma (EHE), a rare vascular sarcoma with an unpredictable disease course. To date, how TAZ::CAMTA1 initiates tumour formation remains unexplained. To study the oncogenic mechanism leading to EHE initiation, we developed a model system whereby TAZ::CAMTA1 expression is induced by doxycycline in primary endothelial cells. Using this model, we establish that upon TAZ::CAMTA1 expression endothelial cells rapidly enter a hypertranscription state, triggering considerable DNA damage. As a result, TC-expressing cells become trapped in S phase. Additionally, TAZ::CAMTA1-expressing endothelial cells have impaired homologous recombination, as shown by reduced BRCA1 and RAD51 foci formation. Consequently, the DNA damage remains unrepaired and TAZ::CAMTA1-expressing cells enter senescence. Knockout of Cdkn2a, the most common secondary mutation found in EHE, allows senescence bypass and uncontrolled growth. Together, this provides a mechanistic explanation for the clinical course of EHE and offers novel insight into therapeutic options.


Asunto(s)
Hemangioendotelioma Epitelioide , Transactivadores , Humanos , Transactivadores/genética , Células Endoteliales/patología , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas de Unión al Calcio/genética , Factores de Transcripción/genética , Hemangioendotelioma Epitelioide/genética , Hemangioendotelioma Epitelioide/patología , Proteínas de Fusión Oncogénica/genética , Inestabilidad Genómica
2.
iScience ; 26(9): 107583, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37694151

RESUMEN

During embryonic development, all blood progenitors are initially generated from endothelial cells that acquire a hemogenic potential. Blood progenitors emerge through an endothelial-to-hematopoietic transition regulated by the transcription factor RUNX1. To date, we still know very little about the molecular characteristics of hemogenic endothelium and the molecular changes underlying the transition from endothelium to hematopoiesis. Here, we analyzed at the single cell level a human embryonic stem cell-derived endothelial population containing hemogenic potential. RUNX1-expressing endothelial cells, which harbor enriched hemogenic potential, show very little molecular differences to their endothelial counterpart suggesting priming toward hemogenic potential rather than commitment. Additionally, we identify CD82 as a marker of the endothelium-to-hematopoietic transition. CD82 expression is rapidly upregulated in newly specified blood progenitors then rapidly downregulated as further differentiation occurs. Together our data suggest that endothelial cells are first primed toward hematopoietic fate, and then rapidly undergo the transition from endothelium to blood.

3.
Cancers (Basel) ; 15(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37296967

RESUMEN

Epithelioid haemangioendothelioma (EHE) is a rare sarcoma of the vascular endothelium with an unpredictable disease course. EHE tumours can remain indolent for long period of time but may suddenly evolve into an aggressive disease with widespread metastases and a poor prognosis. Two mutually exclusive chromosomal translocations define EHE tumours, each involving one of the transcription co-factors TAZ and YAP. The TAZ-CAMTA1 fusion protein results from a t(1;3) translocation and is present in 90% of EHE tumours. The remaining 10% of EHE cases harbour a t(X;11) translocation, resulting in the YAP1-TFE3 (YT) fusion protein. Until recently, the lack of representative EHE models made it challenging to study the mechanisms by which these fusion proteins promote tumorigenesis. Here, we describe and compare the recently developed experimental approaches that are currently available for studying this cancer. After summarising the key findings obtained with each experimental approach, we discuss the advantages and limitations of these different model systems. Our survey of the current literature shows how each experimental approach can be utilised in different ways to improve our understanding of EHE initiation and progression. Ultimately, this should lead to better treatment options for patients.

4.
EMBO J ; 42(5): e109032, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36715213

RESUMEN

Despite a growing catalog of secreted factors critical for lymphatic network assembly, little is known about the mechanisms that modulate the expression level of these molecular cues in blood vascular endothelial cells (BECs). Here, we show that a BEC-specific transcription factor, SOX7, plays a crucial role in a non-cell-autonomous manner by modulating the transcription of angiocrine signals to pattern lymphatic vessels. While SOX7 is not expressed in lymphatic endothelial cells (LECs), the conditional loss of SOX7 function in mouse embryos causes a dysmorphic dermal lymphatic phenotype. We identify novel distant regulatory regions in mice and humans that contribute to directly repressing the transcription of a major lymphangiogenic growth factor (Vegfc) in a SOX7-dependent manner. Further, we show that SOX7 directly binds HEY1, a canonical repressor of the Notch pathway, suggesting that transcriptional repression may also be modulated by the recruitment of this protein partner at Vegfc genomic regulatory regions. Our work unveils a role for SOX7 in modulating downstream signaling events crucial for lymphatic patterning, at least in part via the transcriptional repression of VEGFC levels in the blood vascular endothelium.


Asunto(s)
Células Endoteliales , Vasos Linfáticos , Humanos , Ratones , Animales , Células Endoteliales/metabolismo , Vasos Linfáticos/metabolismo , Regulación de la Expresión Génica , Endotelio Vascular , Factores de Transcripción/metabolismo , Linfangiogénesis/genética , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo
6.
Blood ; 139(3): 343-356, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34517413

RESUMEN

In vitro generation and expansion of hematopoietic stem cells (HSCs) holds great promise for the treatment of any ailment that relies on bone marrow or blood transplantation. To achieve this, it is essential to resolve the molecular and cellular pathways that govern HSC formation in the embryo. HSCs first emerge in the aorta-gonad-mesonephros (AGM) region, where a rare subset of endothelial cells, hemogenic endothelium (HE), undergoes an endothelial-to-hematopoietic transition (EHT). Here, we present full-length single-cell RNA sequencing (scRNA-seq) of the EHT process with a focus on HE and dorsal aorta niche cells. By using Runx1b and Gfi1/1b transgenic reporter mouse models to isolate HE, we uncovered that the pre-HE to HE continuum is specifically marked by angiotensin-I converting enzyme (ACE) expression. We established that HE cells begin to enter the cell cycle near the time of EHT initiation when their morphology still resembles endothelial cells. We further demonstrated that RUNX1 AGM niche cells consist of vascular smooth muscle cells and PDGFRa+ mesenchymal cells and can functionally support hematopoiesis. Overall, our study provides new insights into HE differentiation toward HSC and the role of AGM RUNX1+ niche cells in this process. Our expansive scRNA-seq datasets represents a powerful resource to investigate these processes further.


Asunto(s)
Embrión de Mamíferos/embriología , Hemangioblastos/citología , Hematopoyesis , Células Madre Hematopoyéticas/citología , Animales , Diferenciación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Mesonefro/citología , Mesonefro/embriología , Mesonefro/metabolismo , Ratones , Análisis de la Célula Individual , Transcriptoma , Pez Cebra
8.
STAR Protoc ; 2(1): 100367, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33718891

RESUMEN

Little is known about the emergence of blood progenitors during human embryogenesis due to ethical reasons and restricted embryo access. The use of human embryonic stem cells (hESCs) as a model system offers unique opportunities to dissect human blood cell formation. Here, we describe a protocol allowing the differentiation of hESCs via embryoid bodies toward hemogenic endothelium and its subsequent differentiation to blood progenitors. This protocol relies on the formation of embryoid bodies, which is tricky if not carefully performed. For complete details on the use and execution of this protocol, please refer to Garcia-Alegria et al. (2018).


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Cuerpos Embrioides/citología , Células Madre Hematopoyéticas/citología , Células Madre Embrionarias/citología , Citometría de Flujo , Hemangioblastos , Hematopoyesis , Células Madre Embrionarias Humanas/citología , Humanos , Células Madre Pluripotentes/citología
9.
Front Cell Dev Biol ; 9: 812639, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34977046

RESUMEN

The transcription factor RUNX1 is a master regulator of blood cell specification. During embryogenesis, hematopoietic progenitors are initially generated from hemogenic endothelium through an endothelium-to-hematopoietic transition controlled by RUNX1. Several studies have dissected the expression pattern and role of RUNX1 isoforms at the onset of mouse hematopoiesis, however the precise pattern of RUNX1 isoform expression and biological output of RUNX1-expressing cells at the onset of human hematopoiesis is still not fully understood. Here, we investigated these questions using a RUNX1b:VENUS RUNX1c:TOMATO human embryonic stem cell line which allows multi-parameter single cell resolution via flow cytometry and isolation of RUNX1b-expressing cells for further analysis. Our data reveal the sequential expression of the two RUNX1 isoforms with RUNX1b expressed first in a subset of endothelial cells and during the endothelial to hematopoietic transition while RUNX1c only becomes expressed in fully specified blood cells. Furthermore, our data show that RUNX1b marks endothelial cells endowed with hemogenic potential and that RUNX1b expression level determines hemogenic competency in a dose-dependent manner. Together our data reveal the dynamic of RUNX1 isoforms expression at the onset of human blood specification and establish RUNX1b isoform as the earliest known marker for hemogenic competency.

10.
Mol Cells ; 43(2): 126-138, 2020 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-31991535

RESUMEN

The transcription factor RUNX1 first came to prominence due to its involvement in the t(8;21) translocation in acute myeloid leukemia (AML). Since this discovery, RUNX1 has been shown to play important roles not only in leukemia but also in the ontogeny of the normal hematopoietic system. Although it is currently still challenging to fully assess the different parameters regulating RUNX1 dosage, it has become clear that the dose of RUNX1 can greatly affect both leukemia and normal hematopoietic development. It is also becoming evident that varying levels of RUNX1 expression can be used as markers of tumor progression not only in the hematopoietic system, but also in non-hematopoietic cancers. Here, we provide an overview of the current knowledge of the effects of RUNX1 dosage in normal development of both hematopoietic and epithelial tissues and their associated cancers.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/uso terapéutico , Neoplasias/tratamiento farmacológico , Subunidad alfa 2 del Factor de Unión al Sitio Principal/farmacología , Humanos
11.
PLoS Comput Biol ; 15(11): e1007337, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31682597

RESUMEN

Gene expression governs cell fate, and is regulated via a complex interplay of transcription factors and molecules that change chromatin structure. Advances in sequencing-based assays have enabled investigation of these processes genome-wide, leading to large datasets that combine information on the dynamics of gene expression, transcription factor binding and chromatin structure as cells differentiate. While numerous studies focus on the effects of these features on broader gene regulation, less work has been done on the mechanisms of gene-specific transcriptional control. In this study, we have focussed on the latter by integrating gene expression data for the in vitro differentiation of murine ES cells to macrophages and cardiomyocytes, with dynamic data on chromatin structure, epigenetics and transcription factor binding. Combining a novel strategy to identify communities of related control elements with a penalized regression approach, we developed individual models to identify the potential control elements predictive of the expression of each gene. Our models were compared to an existing method and evaluated using the existing literature and new experimental data from embryonic stem cell differentiation reporter assays. Our method is able to identify transcriptional control elements in a gene specific manner that reflect known regulatory relationships and to generate useful hypotheses for further testing.


Asunto(s)
Diferenciación Celular/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Elementos Reguladores de la Transcripción/genética , Animales , Diferenciación Celular/fisiología , Cromatina/metabolismo , Bases de Datos Genéticas , Epigénesis Genética , Epigenómica , Regulación de la Expresión Génica/genética , Genoma , Macrófagos/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Miocitos Cardíacos/metabolismo , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo
12.
Development ; 146(17)2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488508

RESUMEN

RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.


Asunto(s)
Subunidades alfa del Factor de Unión al Sitio Principal/genética , Subunidades alfa del Factor de Unión al Sitio Principal/metabolismo , Mamíferos/embriología , Mamíferos/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos , Hematopoyesis/fisiología , Homeostasis/fisiología , Humanos , Ratones , Neoplasias/metabolismo
13.
FEBS Lett ; 593(23): 3304-3315, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31432499

RESUMEN

The haematopoietic system is established during embryonic life through a series of developmental steps that culminates with the generation of haematopoietic stem cells. Characterisation of the transcriptional network that regulates blood cell emergence has led to the identification of transcription factors essential for this process. Among the many factors wired within this complex regulatory network, ETV2, SCL and RUNX1 are the central components. All three factors are absolutely required for blood cell generation, each one controlling a precise step of specification from the mesoderm germ layer to fully functional blood progenitors. Insight into the transcriptional control of blood cell emergence has been used for devising protocols to generate blood cells de novo, either through reprogramming of somatic cells or through forward programming of pluripotent stem cells. Interestingly, the physiological process of blood cell generation and its laboratory-engineered counterpart have very little in common.


Asunto(s)
Células Sanguíneas/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Proteína 1 de la Leucemia Linfocítica T Aguda/genética , Factores de Transcripción/genética , Células Sanguíneas/citología , Diferenciación Celular/genética , Reprogramación Celular/genética , Células Madre Hematopoyéticas , Humanos , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Activación Transcripcional
14.
Stem Cell Reports ; 11(5): 1061-1074, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30449319

RESUMEN

The differentiation of human embryonic stem cells (hESCs) to hematopoietic lineages initiates with the specification of hemogenic endothelium, a transient specialized endothelial precursor of all blood cells. This in vitro system provides an invaluable model to dissect the emergence of hematopoiesis in humans. However, the study of hematopoiesis specification is hampered by a lack of consensus in the timing of hemogenic endothelium analysis and the full hematopoietic potential of this population. Here, our data reveal a sharp decline in the hemogenic potential of endothelium populations isolated over the course of hESC differentiation. Furthermore, by tracking the dynamic expression of CD31 and CD235a at the onset of hematopoiesis, we identified three populations of hematopoietic progenitors, representing primitive and definitive subsets that all emerge from the earliest specified hemogenic endothelium. Our data establish that hemogenic endothelium populations endowed with primitive and definitive hematopoietic potential are specified simultaneously from the mesoderm in differentiating hESCs.


Asunto(s)
Hemangioblastos/metabolismo , Hematopoyesis , Antígenos CD/metabolismo , Diferenciación Celular , Linaje de la Célula , Cuerpos Embrioides/citología , Células Endoteliales/citología , Humanos , Células del Estroma/citología , Transcripción Genética
15.
Nat Commun ; 9(1): 2517, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29955049

RESUMEN

Haematopoietic stem cells (HSCs) are generated from haemogenic endothelial (HE) cells via the formation of intra-aortic haematopoietic clusters (IAHCs) in vertebrate embryos. The molecular events controlling endothelial specification, endothelial-to-haematopoietic transition (EHT) and IAHC formation, as it occurs in vivo inside the aorta, are still poorly understood. To gain insight in these processes, we performed single-cell RNA-sequencing of non-HE cells, HE cells, cells undergoing EHT, IAHC cells, and whole IAHCs isolated from mouse embryo aortas. Our analysis identified the genes and transcription factor networks activated during the endothelial-to-haematopoietic switch and IAHC cell maturation toward an HSC fate. Our study provides an unprecedented complete resource to study in depth HSC generation in vivo. It will pave the way for improving HSC production in vitro to address the growing need for tailor-made HSCs to treat patients with blood-related disorders.


Asunto(s)
Aorta/metabolismo , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Transcriptoma , Animales , Aorta/citología , Aorta/crecimiento & desarrollo , Diferenciación Celular , Embrión de Mamíferos , Femenino , Ontología de Genes , Redes Reguladoras de Genes , Hemangioblastos/citología , Células Madre Hematopoyéticas/citología , Ratones , Ratones Endogámicos C57BL , Anotación de Secuencia Molecular , Análisis de la Célula Individual
16.
Stem Cell Reports ; 10(4): 1369-1383, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29641990

RESUMEN

The first hematopoietic stem and progenitor cells are generated during development from hemogenic endothelium (HE) through trans-differentiation. The molecular mechanisms underlying this endothelial-to-hematopoietic transition (EHT) remain poorly understood. Here, we explored the role of the epigenetic regulators HDAC1 and HDAC2 in the emergence of these first blood cells in vitro and in vivo. Loss of either of these epigenetic silencers through conditional genetic deletion reduced hematopoietic transition from HE, while combined deletion was incompatible with blood generation. We investigated the molecular basis of HDAC1 and HDAC2 requirement and identified TGF-ß signaling as one of the pathways controlled by HDAC1 and HDAC2. Accordingly, we experimentally demonstrated that activation of this pathway in HE cells reinforces hematopoietic development. Altogether, our results establish that HDAC1 and HDAC2 modulate TGF-ß signaling and suggest that stimulation of this pathway in HE cells would be beneficial for production of hematopoietic cells for regenerative therapies.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Hematopoyesis , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Benzamidas/farmacología , Diferenciación Celular/efectos de los fármacos , Dioxoles/farmacología , Células Endoteliales/efectos de los fármacos , Eliminación de Gen , Hemangioblastos/citología , Hematopoyesis/efectos de los fármacos , Histona Desacetilasa 1/deficiencia , Histona Desacetilasa 2/deficiencia , Inhibidores de Histona Desacetilasas/farmacología , Ratones , Transducción de Señal/efectos de los fármacos
17.
Development ; 145(5)2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29530939

RESUMEN

During ontogeny, hematopoietic stem and progenitor cells arise from hemogenic endothelium through an endothelial-to-hematopoietic transition that is strictly dependent on the transcription factor RUNX1. Although it is well established that RUNX1 is essential for the onset of hematopoiesis, little is known about the role of RUNX1 dosage specifically in hemogenic endothelium and during the endothelial-to-hematopoietic transition. Here, we used the mouse embryonic stem cell differentiation system to determine if and how RUNX1 dosage affects hemogenic endothelium differentiation. The use of inducible Runx1 expression combined with alterations in the expression of the RUNX1 co-factor CBFß allowed us to evaluate a wide range of RUNX1 levels. We demonstrate that low RUNX1 levels are sufficient and necessary to initiate an effective endothelial-to-hematopoietic transition. Subsequently, RUNX1 is also required to complete the endothelial-to-hematopoietic transition and to generate functional hematopoietic precursors. In contrast, elevated levels of RUNX1 are able to drive an accelerated endothelial-to-hematopoietic transition, but the resulting cells are unable to generate mature hematopoietic cells. Together, our results suggest that RUNX1 dosage plays a pivotal role in hemogenic endothelium maturation and the establishment of the hematopoietic system.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Endotelio Vascular/fisiología , Dosificación de Gen/fisiología , Hemangioblastos/fisiología , Hematopoyesis/genética , Células Madre Hematopoyéticas/fisiología , Animales , Diferenciación Celular/genética , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Regulación de la Expresión Génica , Ratones , Ratones Noqueados
18.
Stem Cell Reports ; 10(3): 875-889, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29456178

RESUMEN

Generation of hematopoietic stem cells (HSCs) from pluripotent stem cells, in vitro, holds great promise for regenerative therapies. Primarily, this has been achieved in mouse cells by overexpression of the homeotic selector protein HOXB4. The exact cellular stage at which HOXB4 promotes hematopoietic development, in vitro, is not yet known. However, its identification is a prerequisite to unambiguously identify the molecular circuits controlling hematopoiesis, since the activity of HOX proteins is highly cell and context dependent. To identify that stage, we retrovirally expressed HOXB4 in differentiating mouse embryonic stem cells (ESCs). Through the use of Runx1(-/-) ESCs containing a doxycycline-inducible Runx1 coding sequence, we uncovered that HOXB4 promoted the formation of hemogenic endothelium cells without altering endothelial cell development. Whole-transcriptome analysis revealed that its expression mediated the upregulation of transcription of core transcription factors necessary for hematopoiesis, culminating in the formation of blood progenitors upon initiation of Runx1 expression.


Asunto(s)
Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Endotelio/metabolismo , Endotelio/fisiología , Hematopoyesis/fisiología , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/fisiología , Perfilación de la Expresión Génica/métodos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Ratones , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/fisiología , Transcripción Genética/fisiología , Regulación hacia Arriba/fisiología
19.
PLoS Genet ; 14(1): e1007127, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29300724

RESUMEN

In recent years, highly detailed characterization of adult bone marrow (BM) myeloid progenitors has been achieved and, as a result, the impact of somatic defects on different hematopoietic lineage fate decisions can be precisely determined. Fetal liver (FL) hematopoietic progenitor cells (HPCs) are poorly characterized in comparison, potentially hindering the study of the impact of genetic alterations on midgestation hematopoiesis. Numerous disorders, for example infant acute leukemias, have in utero origins and their study would therefore benefit from the ability to isolate highly purified progenitor subsets. We previously demonstrated that a Runx1 distal promoter (P1)-GFP::proximal promoter (P2)-hCD4 dual-reporter mouse (Mus musculus) model can be used to identify adult BM progenitor subsets with distinct lineage preferences. In this study, we undertook the characterization of the expression of Runx1-P1-GFP and P2-hCD4 in FL. Expression of P2-hCD4 in the FL immunophenotypic Megakaryocyte-Erythroid Progenitor (MEP) and Common Myeloid Progenitor (CMP) compartments corresponded to increased granulocytic/monocytic/megakaryocytic and decreased erythroid specification. Moreover, Runx1-P2-hCD4 expression correlated with several endogenous cell surface markers' expression, including CD31 and CD45, providing a new strategy for prospective identification of highly purified fetal myeloid progenitors in transgenic mouse models. We utilized this methodology to compare the impact of the deletion of either total RUNX1 or RUNX1C alone and to determine the fetal HPCs lineages most substantially affected. This new prospective identification of FL progenitors therefore raises the prospect of identifying the underlying gene networks responsible with greater precision than previously possible.


Asunto(s)
Linaje de la Célula/genética , Células Madre Hematopoyéticas/citología , Células Progenitoras Mieloides/citología , Animales , Médula Ósea/embriología , Diferenciación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Modelos Animales de Enfermedad , Granulocitos/citología , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Hígado/citología , Hígado/embriología , Hígado/metabolismo , Megacariocitos/citología , Ratones , Ratones Transgénicos , Monocitos/citología , Estudios Prospectivos
20.
Oncotarget ; 8(39): 64974-64983, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-29029405

RESUMEN

B cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most frequent type of cancer in children. Despite progresses in curative treatment, intensive chemotherapy regimens still cause life threatening complications. A better understanding of the molecular mechanisms underlying the emergence and maintenance of BCP-ALL is fundamental for the development of novel therapies. Here, we establish that SOX7 is frequently and specifically expressed in BCP-ALL and that the expression of this transcription factor does not correlate with any specific cytogenetic abnormalities. Using human leukemia model systems, we establish that the down-regulation of SOX7 in BCP-ALL causes a significant decrease in proliferation and clonogenicity in vitro that correlates with a delay in leukemia initiation and burden in vivo. Overall, these results identify a novel and important functional role for the transcription factor SOX7 in promoting the maintenance of BCP-ALL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA