Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(41): e202307884, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37604782

RESUMEN

Triangulenes are a class of open-shell triangular graphene flakes with total spin increasing with their size. In the last years, on-surface-synthesis strategies have permitted fabricating and engineering triangulenes of various sizes and structures with atomic precision. However, direct proof of the increasing total spin with their size remains elusive. In this work, we report the combined in-solution and on-surface synthesis of a large nitrogen-doped triangulene (aza-[5]-triangulene) on a Au(111) surface, and the detection of its high-spin ground state. Bond-resolved scanning tunneling microscopy images uncovered radical states distributed along the zigzag edges, which were detected as weak zero-bias resonances in scanning tunneling spectra. These spectral features reveal the partial Kondo screening of a high-spin state. Through a combination of several simulation tools, we find that the observed distribution of radical states is explained by a quintet ground state (S=2), instead of the quartet state (S=3/2) expected for the neutral species. This confirms that electron transfer to the metal substrate raises the spin of the ground state. We further provide a qualitative description of the change of (anti)aromaticity introduced by N-substitution, and its role in the charge stabilization on a surface, resulting in an S=2 aza-triangulene on Au(111).

2.
Phys Chem Chem Phys ; 24(34): 20239-20248, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35996966

RESUMEN

The excitation of low-energy electron-hole pairs is one of the most relevant processes in the gas-surface interaction. An efficient tool to account for these excitations in simulations of atomic and molecular dynamics at surfaces is the so-called local density friction approximation (LDFA). The LDFA is based on a strong approximation that simplifies the dynamics of the electronic system: a local friction coefficient is defined using the value of the electronic density for the unperturbed system at each point of the dynamics. In this work, we apply real-time time-dependent density functional theory to the problem of the electronic friction of a negative point charge colliding with spherical jellium metal clusters. Our non-adiabatic, parameter-free results provide a benchmark for the widely used LDFA approximation and allow the discussion of various processes relevant to the electronic response of the system in the presence of the projectile.

3.
R Soc Open Sci ; 9(5): 212011, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35619995

RESUMEN

Modelling the inelastic scattering of electrons in water is fundamental, given their crucial role in biological damage. In Monte Carlo track-structure (MC-TS) codes used to assess biological damage, the energy loss function (ELF), from which cross sections are extracted, is derived from different semi-empirical optical models. Only recently have first ab initio results for the ELF and cross sections in water become available. For benchmarking purpose, in this work, we present ab initio linear-response time-dependent density functional theory calculations of the ELF of liquid water. We calculated the inelastic scattering cross sections, inelastic mean free paths, and electronic stopping power and compared our results with recent calculations and experimental data showing a good agreement. In addition, we provide an in-depth analysis of the contributions of different molecular orbitals, species and orbital angular momenta to the total ELF. Moreover, we present single-differential cross sections computed for each molecular orbital channel, which should prove useful for MC-TS simulations.

4.
R Soc Open Sci ; 7(11): 200925, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33391793

RESUMEN

Motivated by the radiation damage of solar panels in space, firstly, the results of Monte Carlo particle transport simulations are presented for proton impact on triple-junction Ga0.5In0.5P/GaAs/Ge solar cells, showing the proton projectile penetration in the cells as a function of energy. It is followed by a systematic ab initio investigation of the electronic stopping power (ESP) for protons in different layers of the cell at the relevant velocities via real-time time-dependent density functional theory calculations. The ESP is found to depend significantly on different channelling conditions, which should affect the low-velocity damage predictions, and which are understood in terms of impact parameter and electron density along the path. Additionally, we explore the effect of the interface between the layers of the multilayer structure on the energy loss of a proton, along with the effect of strain in the lattice-matched solar cell. Both effects are found to be small compared with the main bulk effect. The interface energy loss has been found to increase with decreasing proton velocity, and in one case, there is an effective interface energy gain.

5.
Nanoscale Res Lett ; 7(1): 447, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22873820

RESUMEN

: Recent advances in attosecond spectroscopy techniques have fueled the interest in the theoretical description of electronic processes taking place in the subfemtosecond time scale. Here we study the coupled dynamic screening of a localized hole and a photoelectron emitted from a metal cluster using a semi-classical model. Electron density dynamics in the cluster is calculated with time-dependent density functional theory, and the motion of the photoemitted electron is described classically. We show that the dynamic screening of the hole by the cluster electrons affects the motion of the photoemitted electron. At the very beginning of its trajectory, the photoemitted electron interacts with the cluster electrons that pile up to screen the hole. Within our model, this gives rise to a significant reduction of the energy lost by the photoelectron. Thus, this is a velocity-dependent effect that should be accounted for when calculating the average losses suffered by photoemitted electrons in metals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...