Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 88(7): 912-923, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37751863

RESUMEN

Pharmacological value of some natural compounds makes them attractive for use in oncology. The sulfur-containing thiosulfinates found in plants of the genus Allium have long been known as compounds with various therapeutic properties, including antitumor. Over the last few years, the effect of thiosulfinates on various stages of carcinogenesis has been actively investigated. In vitro and in vivo studies have shown that thiosulfinates inhibit proliferation of cancer cells, as well as they induce apoptosis. The purpose of this review is to summarize current data on the use of natural and synthetic thiosulfinates in cancer therapy. Antitumor mechanisms and molecular targets of these promising compounds are discussed. A significant part of the review is devoted to consideration of a new strategy for treatment of oncological diseases - use of the directed enzyme prodrug therapy approach aiming to obtain antitumor thiosulfinates in situ.

2.
Biochemistry (Mosc) ; 88(5): 600-609, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37331706

RESUMEN

O-acetylhomoserine sulfhydrylase is one of the key enzymes in biosynthesis of methionine in Clostridioides difficile. The mechanism of γ-substitution reaction of O-acetyl-L-homoserine catalyzed by this enzyme is the least studied among the pyridoxal-5'-phosphate-dependent enzymes involved in metabolism of cysteine and methionine. To clarify the role of active site residues Tyr52 and Tyr107, four mutant forms of the enzyme with replacements of these residues with phenylalanine and alanine were generated. Catalytic and spectral properties of the mutant forms were investigated. The rate of γ-substitution reaction catalyzed by the mutant forms with replaced Tyr52 residue decreased by more than three orders of magnitude compared to the wild-type enzyme. The Tyr107Phe and Tyr107Ala mutant forms practically did not catalyze this reaction. Replacements of the Tyr52 and Tyr107 residues led to the decrease in affinity of apoenzyme to coenzyme by three orders of magnitude and changes in the ionic state of the internal aldimine of the enzyme. The obtained results allowed us to assume that Tyr52 is involved in ensuring optimal position of the catalytic coenzyme-binding lysine residue at the stages of C-α-proton elimination and elimination of the side group of the substrate. Tyr107 could act as a general acid catalyst at the stage of acetate elimination.


Asunto(s)
Clostridioides difficile , Clostridioides difficile/metabolismo , Cisteína Sintasa/química , Cisteína Sintasa/metabolismo , Dominio Catalítico , Clostridioides/metabolismo , Tirosina , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Metionina , Cinética
3.
Front Plant Sci ; 14: 1336192, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283969

RESUMEN

Introduction: Pubescence is an important phenotypic trait observed in both vegetative and generative plant organs. Pubescent plants demonstrate increased resistance to various environmental stresses such as drought, low temperatures, and pests. It serves as a significant morphological marker and aids in selecting stress-resistant cultivars, particularly in wheat. In wheat, pubescence is visible on leaves, leaf sheath, glumes and nodes. Regarding glumes, the presence of pubescence plays a pivotal role in its classification. It supplements other spike characteristics, aiding in distinguishing between different varieties within the wheat species. The determination of pubescence typically involves visual analysis by an expert. However, methods without the use of binocular loupe tend to be subjective, while employing additional equipment is labor-intensive. This paper proposes an integrated approach to determine glume pubescence presence in spike images captured under laboratory conditions using a digital camera and convolutional neural networks. Methods: Initially, image segmentation is conducted to extract the contour of the spike body, followed by cropping of the spike images to an equal size. These images are then classified based on glume pubescence (pubescent/glabrous) using various convolutional neural network architectures (Resnet-18, EfficientNet-B0, and EfficientNet-B1). The networks were trained and tested on a dataset comprising 9,719 spike images. Results: For segmentation, the U-Net model with EfficientNet-B1 encoder was chosen, achieving the segmentation accuracy IoU = 0.947 for the spike body and 0.777 for awns. The classification model for glume pubescence with the highest performance utilized the EfficientNet-B1 architecture. On the test sample, the model exhibited prediction accuracy parameters of F1 = 0.85 and AUC = 0.96, while on the holdout sample it showed F1 = 0.84 and AUC = 0.89. Additionally, the study investigated the relationship between image scale, artificial distortions, and model prediction performance, revealing that higher magnification and smaller distortions yielded a more accurate prediction of glume pubescence.

4.
Biochimie ; 194: 13-18, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34923045

RESUMEN

Therapeutic enzymes used for the treatment of a wide range of human disorders often suffer from suboptimal pharmacokinetics and stability. Engineering approaches such as encapsulation in micro- and nanocarriers, and replacements of amino acid residues of the native enzyme provide significant potential for improving the performance of enzyme therapy. Here, we develop a nanodelivery system on the base of polyion complex vesicles (PICsomes) that includes methionine γ-lyase (MGL) as a therapeutic enzyme. We have two strategies for using the enzyme: first, methionine γ-lyase is an anticancer agent removing l-methionine from plasma, second, the binary system methionine γ-lyase/S-alk(en)yl-l-cysteine sulfoxides is effective in enzyme prodrug therapy (EPT). Various lengths polymers were synthesized, and two mutant forms of the enzyme were used. The catalytic and pharmacokinetic parameters of the nanoformulations were investigated. The catalytic efficiencies of encapsulated enzymes were comparable to that of native enzymes. Pharmacokinetic analysis has shown that inclusion into PICsomes increases half-life of the enzymes, and they can be safely administered in vivo. The results suggest the further use of encapsulated MGLs for EPT and anticancer therapy, and this strategy could be leveraged to improve the efficiency of enzyme-based therapies for managing serious human diseases.


Asunto(s)
Liasas , Liasas de Carbono-Azufre/metabolismo , Cisteína/química , Humanos , Cinética , Liasas/metabolismo , Metionina/metabolismo , Sulfóxidos/metabolismo
5.
Protein Expr Purif ; 180: 105810, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33338587

RESUMEN

The gene NT01CX_1210 of pathogenic bacterium Clostridium novyi annotated as encoding O-acetylhomoserine sulfhydrylase was cloned and expressed in Escherichia coli. The gene product having O-acetylhomoserine sulfhydrylase activity was purified to homogeneity. The protein showed molecular mass of approximately 184 kDa for the native form and 46 kDa for the subunit. The enzyme catalyzes the γ-substitution reaction of O-acetylhomoserine with maximum activity at pH 7.5. Analysis of C. novyi genome allowed us to suggest that there is only one way for the synthesis of l-methionine in the bacterium. The data obtained may provide the basis for further study of the role of OAHS in Clostridium bacteria and an ascertainment of its mechanism.


Asunto(s)
Proteínas Bacterianas , Liasas de Carbono-Oxígeno , Clonación Molecular , Clostridium/genética , Expresión Génica , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Liasas de Carbono-Oxígeno/biosíntesis , Liasas de Carbono-Oxígeno/química , Liasas de Carbono-Oxígeno/genética , Liasas de Carbono-Oxígeno/aislamiento & purificación , Clostridium/enzimología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
6.
Bioorg Med Chem ; 28(7): 115378, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32089391

RESUMEN

A set of AT-specific fluorescent dimeric bisbenzimidazoles DBPA(n) with linkers of different lengths bound to DNA in the minor groove were synthesized and their genetic, virological, and biochemical studies were performed. The DBPA(n) were shown to be effective inhibitors of the histon-like protein H-NS, a regulator of the DNA transcription factor, as well as of the Aliivibrio logei Quorum Sensing regulatory system in E. coli cells. Their antiviral activity was tested in model cell lines infected with herpes simplex virus type I. Also, it was found that DBPA(n) could inhibit catalytic activities of HIV-1 integrase at low micromolar concentrations. All of the dimeric bisbenzimidazoles DBPA(n) manifested fluorescent properties, were well soluble in water, nontoxic up to concentrations of 200 µM, and could penetrate into nuclei followed by binding to DNA.


Asunto(s)
Bisbenzimidazol/química , Bisbenzimidazol/farmacología , ADN/química , Aliivibrio/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Secuencia de Bases , ADN/genética , Diseño de Fármacos , Escherichia coli/metabolismo , Colorantes Fluorescentes , Integrasa de VIH , Inhibidores de Integrasa VIH/farmacología , Ligandos , Estructura Molecular , Pirroles , Percepción de Quorum/fisiología , Relación Estructura-Actividad
7.
IUBMB Life ; 71(11): 1815-1823, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31359602

RESUMEN

O-acetylhomoserine sulfhydrylase (OAHS) is a pyridoxal 5'-phosphate-dependent enzyme involved in microbial methionine biosynthesis. In this study, we report gene cloning, protein purification, and some biochemical characteristics of OAHS from Clostridioides difficile. The enzyme is a tetramer with molecular weight of 185 kDa. It possesses a high activity in the reaction of L-homocysteine synthesis, comparable to reported activities of OAHSes from other sources. OAHS activity is inhibited by metabolic end product L-methionine. L-Propargylglycine was found to be a suicide inhibitor of the enzyme. Substrate analogue Nγ -acetyl-L-2,4-diaminobutyric acid is a competitive inhibitor of OAHS with Ki = 0.04 mM. Analysis of C. difficile genome allows to suggest that the bacterium uses the way of direct sulfhydrylation for the synthesis of L-methionine. The data obtained may provide the basis for further study of the role of OAHS in the pathogenic bacterium and the development of potential inhibitors.


Asunto(s)
Alquinos/metabolismo , Liasas de Carbono-Oxígeno/metabolismo , Clonación Molecular/métodos , Clostridioides difficile/enzimología , Glicina/análogos & derivados , Metionina/biosíntesis , Fosfato de Piridoxal/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Secuencia de Aminoácidos , Liasas de Carbono-Oxígeno/genética , Clostridioides difficile/genética , Genoma Bacteriano , Glicina/metabolismo , Homología de Secuencia , Especificidad por Sustrato
8.
Bioorg Med Chem ; 26(9): 2302-2309, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29602675

RESUMEN

A series of DNA minor groove binding fluorescent dimeric bisbenzimidazoles DBA(n) bearing linkers of various length were synthesized and their biochemical and antiviral activities were evaluated. Their antiviral activity was assessed in model cell systems infected with human herpes simplex virus (HSV-1) and cytomegalovirus (CMV). Compounds DBA(1) and DBA(7) demonstrated in vitro inhibitory properties towards HSV-1, and DBA(7) completely blocked the viral infection. Compound DBA(11) displayed the in vitro therapeutic activity towards both HSV-1 and CMV. All of the DBA(n) could fluoresce, were well soluble in water, not cytotoxic to a concentration of 240 µM, penetrated well into cell nuclei by binding to DNA and could inhibit topo-I at low micromolecular concentrations.


Asunto(s)
Antivirales/química , Bencimidazoles/química , ADN/química , Animales , Antivirales/síntesis química , Antivirales/toxicidad , Bencimidazoles/síntesis química , Bencimidazoles/toxicidad , Bovinos , Línea Celular Tumoral , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citomegalovirus/efectos de los fármacos , Fluorescencia , Herpesvirus Humano 1/efectos de los fármacos , Humanos , Ligandos , Solubilidad , Inhibidores de Topoisomerasa I/síntesis química , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa I/toxicidad , Células Vero
9.
PLoS One ; 13(1): e0189826, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29329300

RESUMEN

BACKGROUND: Hypermethylation is observed in the promoter regions of suppressor genes in the tumor cancer cells. Reactivation of these genes by demethylation of their promoters is a prospective strategy of the anticancer therapy. Previous experiments have shown that symmetric dimeric bisbenzimidazoles DBP(n) are able to block DNA methyltransferase activities. It was also found that DBP(n) produces a moderate effect on the activation of total gene expression in HeLa-TI population containing epigenetically repressed avian sarcoma genome. PRINCIPAL FINDINGS: It is shown that DBP(n) are able to penetrate the cellular membranes and accumulate in breast carcinoma cell MCF-7, mainly in the mitochondria and in the nucleus, excluding the nucleolus. The DBP(n) are non-toxic to the cells and have a weak overall demethylation effect on genomic DNA. DBP(n) demethylate the promoter regions of the tumor suppressor genes PTEN and RARB. DBP(n) promotes expression of the genes RARB, PTEN, CDKN2A, RUNX3, Apaf-1 and APC "silent" in the MCF-7 because of the hypermethylation of their promoter regions. Simultaneously with the demethylation of the DNA in the nucleus a significant increase in the methylation level of rRNA genes in the nucleolus was detected. Increased rDNA methylation correlated with a reduction of the rRNA amount in the cells by 20-30%. It is assumed that during DNA methyltransferase activity inhibition by the DBP(n) in the nucleus, the enzyme is sequestered in the nucleolus and provides additional methylation of the rDNA that are not shielded by DBP(n). CONCLUSIONS/SIGNIFICANCE: It is concluded that DBP (n) are able to accumulate in the nucleus (excluding the nucleolus area) and in the mitochondria of cancer cells, reducing mitochondrial potential. The DBP (n) induce the demethylation of a cancer cell's genome, including the demethylation of the promoters of tumor suppressor genes. DBP (n) significantly increase the methylation of ribosomal RNA genes in the nucleoli. Therefore the further study of these compounds is needed; it could lead to the creation of new anticancer agents.


Asunto(s)
Bencimidazoles/farmacología , Metilación de ADN/efectos de los fármacos , ARN Ribosómico/genética , Receptores de Ácido Retinoico/genética , Bencimidazoles/química , Dimerización , Células HeLa , Humanos , Células MCF-7 , Fosfohidrolasa PTEN , Especies Reactivas de Oxígeno/metabolismo
10.
Biochim Biophys Acta Proteins Proteom ; 1865(9): 1123-1128, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28602917

RESUMEN

The mutant form of Citrobacter freundii methionine γ-lyase with the replacement of active site Cys115 for His has been found to be inactive in the γ-elimination reaction of methionine while fully active in the γ-elimination reaction of O-acetyl-l-homoserine and in the ß-elimination reaction of S-alk(en)yl-substituted cysteines. In this work, the crystal structure of the mutant enzyme complexed with competitive inhibitor, l-norleucine was determined at 1.45Å resolution. At the enzyme active site the inhibitor proved to be bound both noncovalently and covalently, which corresponds to the two intermediates of the γ- and ß-elimination reactions, Michaelis complex and the external aldimine. Analysis of the structure allowed us to suggest the possible reason for the inability of the mutant enzyme to catalyze the physiological reaction.


Asunto(s)
Proteínas Bacterianas/química , Liasas de Carbono-Azufre/química , Citrobacter freundii/enzimología , Mutación Missense , Norleucina/metabolismo , Mutación Puntual , Sustitución de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Azufre/antagonistas & inhibidores , Liasas de Carbono-Azufre/metabolismo , Dominio Catalítico , Citrobacter freundii/genética , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Conformación Proteica
11.
Bioorg Med Chem Lett ; 25(13): 2634-8, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25987376

RESUMEN

A series of new fluorescent symmetric dimeric bisbenzimidazoles DBP(n) bearing bisbenzimidazole fragments joined by oligomethylene linkers with a central 1,4-piperazine residue were synthesized. The complex formation of DBP(n) in the DNA minor groove was demonstrated. The DBP(n) at micromolar concentrations inhibit in vitro eukaryotic DNA topoisomerase I and prokaryotic DNA methyltransferase (MTase) M.SssI. The DBP(n) were soluble well in aqueous solutions and could penetrate cell and nuclear membranes and stain DNA in live cells. The DBP(n) displayed a moderate effect on the reactivation of gene expression.


Asunto(s)
Bisbenzimidazol/análogos & derivados , ADN/química , ADN/efectos de los fármacos , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Bisbenzimidazol/síntesis química , Bisbenzimidazol/farmacología , Línea Celular , ADN/genética , ADN-Citosina Metilasas/antagonistas & inhibidores , Dimerización , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Colorantes Fluorescentes/química , Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Ratones , Microscopía Fluorescente , Relación Estructura-Actividad , Inhibidores de Topoisomerasa I/síntesis química , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa I/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...