Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 350: 112296, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39427697

RESUMEN

Large scale production of uniform disease-free plants is crucial for Cannabis sativa biotechnology. Existing micropropagation protocols rely heavily on shoot multiplication from existing meristems via direct organogenesis. Such protocols do not allow multiplication of plant material through continuous sub-culturing. Protocols that use indirect regeneration are usually not efficient enough and have very low multiplication rates. In the present study, an efficient protocol that uses a combination of direct organogenesis and callogenesis to induce multiple shoot development cultures is developed. Callogenesis was induced from various explants cultured on the media having various combinations of thidiazuron (TDZ) and naphthaleneacetic acid (NAA); best callogenesis and shoot regeneration was achieved from hypocotyl explants cultured on TDZ 0.4 mg l-1 NAA 0.2 mg l-1. Hypocotyls with cotyledonary node and shoot apical meristem were significantly better for shoot regeneration than explants without it. Shoots obtained from multiple shoot cultures were successfully rooted and then acclimatized under greenhouse conditions to develop into adult cannabis plants.

2.
Curr Issues Mol Biol ; 46(7): 7621-7667, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39057094

RESUMEN

The ß-cells within the pancreas play a pivotal role in insulin production and secretion, responding to fluctuations in blood glucose levels. However, factors like obesity, dietary habits, and prolonged insulin resistance can compromise ß-cell function, contributing to the development of Type 2 Diabetes (T2D). A critical aspect of this dysfunction involves ß-cell dedifferentiation and transdifferentiation, wherein these cells lose their specialized characteristics and adopt different identities, notably transitioning towards progenitor or other pancreatic cell types like α-cells. This process significantly contributes to ß-cell malfunction and the progression of T2D, often surpassing the impact of outright ß-cell loss. Alterations in the expressions of specific genes and transcription factors unique to ß-cells, along with epigenetic modifications and environmental factors such as inflammation, oxidative stress, and mitochondrial dysfunction, underpin the occurrence of ß-cell dedifferentiation and the onset of T2D. Recent research underscores the potential therapeutic value for targeting ß-cell dedifferentiation to manage T2D effectively. In this review, we aim to dissect the intricate mechanisms governing ß-cell dedifferentiation and explore the therapeutic avenues stemming from these insights.

3.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674023

RESUMEN

Cisplatin and other platinum-derived chemotherapy drugs have been used for the treatment of cancer for a long time and are often combined with other medications. Unfortunately, tumours often develop resistance to cisplatin, forcing scientists to look for alternatives or synergistic combinations with other drugs. In this work, we attempted to find a potential synergistic effect between cisplatin and cannabinoid delta-9-THC, as well as the high-THC Cannabis sativa extract, for the treatment of HT-29, HCT-116, and LS-174T colorectal cancer cell lines. However, we found that combinations of the high-THC cannabis extract with cisplatin worked antagonistically on the tested colorectal cancer cell lines. To elucidate the mechanisms of drug interactions and the distinct impacts of individual treatments, we conducted a comprehensive transcriptomic analysis of affected pathways within the colorectal cancer cell line HT-29. Our primary objective was to gain a deeper understanding of the underlying molecular mechanisms associated with each treatment modality and their potential interactions. Our findings revealed an antagonistic interaction between cisplatin and high-THC cannabis extract, which could be linked to alterations in gene transcription associated with cell death (BCL2, BAD, caspase 10), DNA repair pathways (Rad52), and cancer pathways related to drug resistance.


Asunto(s)
Cannabis , Cisplatino , Neoplasias Colorrectales , Dronabinol , Extractos Vegetales , Transcriptoma , Humanos , Cisplatino/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Dronabinol/farmacología , Cannabis/química , Extractos Vegetales/farmacología , Transcriptoma/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Células HT29 , Perfilación de la Expresión Génica/métodos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Apoptosis/efectos de los fármacos
4.
Cell Rep ; 43(4): 114005, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38551961

RESUMEN

The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics. Mechanistically, Pten loss accelerates the endocytic trafficking of DSCAM, FAT3, and MEGF10 off the cell membrane and into endocytic vesicles in amacrine cells. Accordingly, the vesicular proteome, a molecular signature of the cell of origin, is enriched in exocytosis, vesicle-mediated transport, and receptor internalization proteins in Pten conditional knockout (PtencKO) retinas. Wnt signaling molecules are also enriched in PtencKO retinal vesicles, and the genetic or pharmacological disruption of Wnt signaling phenocopies amacrine cell patterning defects. Pten thus controls vesicular trafficking of cell adhesion and signaling molecules to establish retinal amacrine cell mosaics.


Asunto(s)
Células Amacrinas , Adhesión Celular , Endocitosis , Fosfohidrolasa PTEN , Retina , Vía de Señalización Wnt , Animales , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Retina/metabolismo , Ratones , Células Amacrinas/metabolismo , Ratones Noqueados , Transporte de Proteínas , Proteínas Wnt/metabolismo , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética
5.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474042

RESUMEN

Plants are continuously exposed to various environmental stresses. Because they can not escape stress, they have to develop mechanisms of remembering stress exposures somatically and passing it to the progeny. We studied the Arabidopsis thaliana ecotype Columbia plants exposed to cold stress for 25 continuous generations. Our study revealed that multigenerational exposure to cold stress resulted in the changes in the genome and epigenome (DNA methylation) across generations. Main changes in the progeny were due to the high frequency of genetic mutations rather than epigenetic changes; the difference was primarily in single nucleotide substitutions and deletions. The progeny of cold-stressed plants exhibited the higher rate of missense non-synonymous mutations as compared to the progeny of control plants. At the same time, epigenetic changes were more common in the CHG (C = cytosine, H = cytosine, adenine or thymine, G = guanine) and CHH contexts and favored hypomethylation. There was an increase in the frequency of C to T (thymine) transitions at the CHH positions in the progeny of cold stressed plants; because this type of mutations is often due to the deamination of the methylated cytosines, it can be hypothesized that environment-induced changes in methylation contribute to mutagenesis and may be to microevolution processes and that RNA-dependent DNA methylation plays a crucial role. Our work supports the existence of heritable stress response in plants and demonstrates that genetic changes prevail.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Epigenómica/métodos , Respuesta al Choque por Frío , Timina , Epigénesis Genética , Metilación de ADN , Citosina
6.
J Genet Eng Biotechnol ; 22(1): 100357, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494271

RESUMEN

BACKGROUND: Screening and developing novel antifungal agents with minimal environmental impact are needed to maintain and increase crop production, which is constantly threatened by various pathogens. Small peptides with antimicrobial and antifungal activities have been known to play an important role in plant defense both at the pathogen level by suppressing its growth and proliferation as well as at the host level through activation or priming of the plant's immune system for a faster, more robust response against fungi. Rust fungi (Pucciniales) are plant pathogens that can infect key crops and overcome resistance genes introduced in elite wheat cultivars. RESULTS: We performed an in vitro screening of 18 peptides predominantly of plant origin with antifungal or antimicrobial activity for their ability to inhibit leaf rust (Puccinia triticina, CCDS-96-14-1 isolate) urediniospore germination. Nine peptides demonstrated significant fungicidal properties compared to the control. Foliar application of the top three candidates, ß-purothionin, Purothionin-α2 and Defensin-2, decreased the severity of leaf rust infection in wheat (Triticum aestivum L.) seedlings. Additionally, increased pathogen resistance was paralleled by elevated expression of defense-related genes. CONCLUSIONS: Identified antifungal peptides could potentially be engineered in the wheat genome to provide an alternative source of genetic resistance to leaf rust.

7.
Genes (Basel) ; 15(2)2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38397173

RESUMEN

Serotonin emerges as a pivotal factor influencing the growth and functionality of ß-cells. Psilocybin, a natural compound derived from mushrooms of the Psilocybe genus, exerts agonistic effects on the serotonin 5-HT2A and 5-HT2B receptors, thereby mimicking serotonin's behavior. This study investigates the potential impacts of psilocybin on ß-cell viability, dedifferentiation, and function using an in vitro system. The INS-1 832/13 Rat Insulinoma cell line underwent psilocybin pretreatment, followed by exposure to high glucose-high lipid (HG-HL) conditions for specific time periods. After being harvested from treated cells, total transcript and cellular protein were utilized for further investigation. Our findings implied that psilocybin administration effectively mitigates HG-HL-stimulated ß-cell loss, potentially mediated through the modulation of apoptotic biomarkers, which is possibly related to the mitigation of TXNIP, STAT-1, and STAT-3 phosphorylation. Furthermore, psilocybin exhibits the capacity to modulate the expression of key genes associated with ß-cell dedifferentiation, including Pou5f1 and Nanog, indicating its potential in attenuating ß-cell dedifferentiation. This research lays the groundwork for further exploration into the therapeutic potential of psilocybin in Type II diabetes intervention.


Asunto(s)
Diabetes Mellitus Tipo 2 , Psilocibina , Animales , Ratas , Psilocibina/farmacología , Supervivencia Celular , Serotonina , Glucosa/farmacología , Lípidos , Proteínas de Ciclo Celular
8.
Microorganisms ; 12(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38399647

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) is a major concern in the food industry and requires effective control measures to prevent foodborne illnesses. Previous studies have demonstrated increased difficulty in the control of biofilm-forming STEC. Desiccation, achieved through osmotic stress and water removal, has emerged as a potential antimicrobial hurdle. This study focused on 254 genetically diverse E. coli strains collected from cattle, carcass hides, hide-off carcasses, and processing equipment. Of these, 141 (55.51%) were STEC and 113 (44.48%) were generic E. coli. The biofilm-forming capabilities of these isolates were assessed, and their desiccation tolerance was investigated to understand the relationships between growth temperature, relative humidity (RH), and bacterial survival. Only 28% of the STEC isolates had the ability to form biofilms, compared to 60% of the generic E. coli. Stainless steel surfaces were exposed to different combinations of temperature (0 °C or 35 °C) and relative humidity (75% or 100%), and the bacterial attachment and survival rates were measured over 72 h and compared to controls. The results revealed that all the strains exposed to 75% relative humidity (RH) at any temperature had reduced growth (p < 0.001). In contrast, 35 °C and 100% RH supported bacterial proliferation, except for isolates forming the strongest biofilms. The ability of E. coli to form a biofilm did not impact growth reduction at 75% RH. Therefore, desiccation treatment at 75% RH at temperatures of 0 °C or 35 °C holds promise as a novel antimicrobial hurdle for the removal of biofilm-forming E. coli from challenging-to-clean surfaces and equipment within food processing facilities.

9.
Quant Plant Biol ; 4: e15, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38156078

RESUMEN

Most plants are adapted to their environments through generations of exposure to all elements. The adaptation process involves the best possible response to fluctuations in the environment based on the genetic and epigenetic make-up of the organism. Many plant species have the capacity to acclimate or adapt to certain stresses, allowing them to respond more efficiently, with fewer resources diverted from growth and development. However, plants can also acquire protection against stress across generations. Such a response is known as an intergenerational response to stress; typically, plants lose most of the tolerance in the subsequent generation when propagated without stress. Occasionally, the protection lasts for more than one generation after stress exposure and such a response is called transgenerational. In this review, we will summarize what is known about inter- and transgenerational responses to stress, focus on phenotypic and epigenetic events, their mechanisms and ecological and evolutionary meaning.

10.
Life (Basel) ; 13(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38137946

RESUMEN

Inflammation plays a pivotal role in the development and progression of inflammatory bowel disease (IBD), by contributing to tissue damage and exacerbating the immune response. The investigation of serotonin receptor 2A (5-HT2A) ligands and transient receptor potential (TRP) channel ligands is of significant interest due to their potential to modulate key inflammatory pathways, mitigate the pathological effects of inflammation, and offer new avenues for therapeutic interventions in IBD. This study investigates the anti-inflammatory effects of 5-HT2A ligands, including psilocybin, 4-AcO-DMT, and ketanserin, in combination with TRP channel ligands, including capsaicin, curcumin, and eugenol, on the inflammatory response induced by tumor necrosis factor (TNF)-α and interferon (IFN)-γ in human 3D EpiIntestinal tissue. Enzyme-linked immunosorbent assay was used to assess the expression of pro-inflammatory markers TNF-α, IFN-γ, IL-6, IL-8, MCP-1, and GM-CSF. Our results show that psilocybin, 4-AcO-DMT, and eugenol significantly reduce TNF-α and IFN-γ levels, while capsaicin and curcumin decrease these markers to a lesser extent. Psilocybin effectively lowers IL-6 and IL-8 levels, but curcumin, capsaicin, and 4-AcO-DMT have limited effects on these markers. In addition, psilocybin can significantly decrease MCP-1 and GM-CSF levels. While ketanserin lowers IL-6 and GM-CSF levels, there are no effects seen on TNF-α, IFN-γ, IL-8, or MCP-1. Although synergistic effects between 5-HT2A and TRP channel ligands are minimal in this study, the results provide further evidence of the anti-inflammatory effects of psilocybin and eugenol. Further research is needed to understand the mechanisms of action and the feasibility of using these compounds as anti-inflammatory therapies for conditions like IBD.

11.
Plants (Basel) ; 12(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37960024

RESUMEN

All species are well adapted to their environment. Stress causes a magnitude of biochemical and molecular responses in plants, leading to physiological or pathological changes. The response to various stresses is genetically predetermined, but is also controlled on the epigenetic level. Most plants are adapted to their environments through generations of exposure to all elements. Many plant species have the capacity to acclimate or adapt to certain stresses using the mechanism of priming. In most cases, priming is a somatic response allowing plants to deal with the same or similar stress more efficiently, with fewer resources diverted from growth and development. Priming likely relies on multiple mechanisms, but the differential expression of non-coding RNAs, changes in DNA methylation, histone modifications, and nucleosome repositioning play a crucial role. Specifically, we emphasize the role of BRM/CHR17, BRU1, FGT1, HFSA2, and H2A.Z proteins as positive regulators, and CAF-1, MOM1, DDM1, and SGS3 as potential negative regulators of somatic stress memory. In this review, we will discuss the role of epigenetic factors in response to stress, priming, and the somatic memory of stress exposures.

12.
Molecules ; 28(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38005341

RESUMEN

Inflammation is a natural immune response to injury, infection, or tissue damage. It plays a crucial role in maintaining overall health and promoting healing. However, when inflammation becomes chronic and uncontrolled, it can contribute to the development of various inflammatory conditions, including type 2 diabetes. In type 2 diabetes, pancreatic ß-cells have to overwork and the continuous impact of a high glucose, high lipid (HG-HL) diet contributes to their loss and dedifferentiation. This study aimed to investigate the anti-inflammatory effects of eugenol and its impact on the loss and dedifferentiation of ß-cells. THP-1 macrophages were pretreated with eugenol for one hour and then exposed to lipopolysaccharide (LPS) for three hours to induce inflammation. Additionally, the second phase of NLRP3 inflammasome activation was induced by incubating the LPS-stimulated cells with adenosine triphosphate (ATP) for 30 min. The results showed that eugenol reduced the expression of proinflammatory genes, such as IL-1ß, IL-6 and cyclooxygenase-2 (COX-2), potentially by inhibiting the activation of transcription factors NF-κB and TYK2. Eugenol also demonstrated inhibitory effects on the levels of NLRP3 mRNA and protein and Pannexin-1 (PANX-1) activation, eventually impacting the assembly of the NLRP3 inflammasome and the production of mature IL-1ß. Additionally, eugenol reduced the elevated levels of adenosine deaminase acting on RNA 1 (ADAR1) transcript, suggesting its role in post-transcriptional mechanisms that regulate inflammatory responses. Furthermore, eugenol effectively decreased the loss of ß-cells in response to HG-HL, likely by mitigating apoptosis. It also showed promise in suppressing HG-HL-induced ß-cell dedifferentiation by restoring ß-cell-specific biomarkers. Further research on eugenol and its mechanisms of action could lead to the development of therapeutic interventions for inflammatory disorders and the preservation of ß-cell function in the context of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inflamasomas , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos/farmacología , Eugenol/farmacología , Eugenol/metabolismo , Desdiferenciación Celular , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos , FN-kappa B/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Glucosa/metabolismo
13.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834191

RESUMEN

Platinum-derived chemotherapy medications are often combined with other conventional therapies for treating different tumors, including colorectal cancer. However, the development of drug resistance and multiple adverse effects remain common in clinical settings. Thus, there is a necessity to find novel treatments and drug combinations that could effectively target colorectal cancer cells and lower the probability of disease relapse. To find potential synergistic interaction, we designed multiple different combinations between cisplatin, cannabidiol, and intermittent serum starvation on colorectal cancer cell lines. Based on the cell viability assay, we found that combinations between cannabidiol and intermittent serum starvation, cisplatin and intermittent serum starvation, as well as cisplatin, cannabidiol, and intermittent serum starvation can work in a synergistic fashion on different colorectal cancer cell lines. Furthermore, we analyzed differentially expressed genes and affected pathways in colorectal cancer cell lines to understand further the potential molecular mechanisms behind the treatments and their interactions. We found that synergistic interaction between cannabidiol and intermittent serum starvation can be related to changes in the transcription of genes responsible for cell metabolism and cancer's stress pathways. Moreover, when we added cisplatin to the treatments, there was a strong enrichment of genes taking part in G2/M cell cycle arrest and apoptosis.


Asunto(s)
Antineoplásicos , Cannabidiol , Neoplasias Colorrectales , Humanos , Cisplatino/farmacología , Cannabidiol/farmacología , Línea Celular Tumoral , Apoptosis/genética , Perfilación de la Expresión Génica , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sinergismo Farmacológico
14.
Heliyon ; 9(8): e18817, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37664748

RESUMEN

The incidence of chronic inflammatory disorders and autoimmune diseases is rapidly growing. To date, the COVID-19 pandemic caused by SARS-CoV-2 has killed over 6,209,000 people globally, while no drug has been proven effective for the disease. Screening natural anti-inflammatory compounds for clinical application has drawn much attention. In this study, we showed that high-CBD cannabis extracts #1, #5, #7, #169, and #317 suppressed the levels of expression of proinflammatory cyclooxygenase 2 (COX2) and increased the expression of the anti-inflammatory suppressor of cytokine signaling 3 (SOCS3) in human small intestinal epithelial cells (HSIEC) in TNFα/IFNγ-triggered inflammation. We revealed that these extracts, with the exception of extract #169, also profoundly attenuated induction of proinflammatory cytokines interleukin-6 (IL-6) and/or IL-8 proteins through miR-760- and miR-302c-3p-mediated silencing. The prevalent components in extracts #1 and #7 influenced the levels of IL-8 both individually as well as in combination with each other. However, the high-dose cannabis extracts displayed an inhibitory effect in the growth of HSIEC cells. These results show that our high-CBD cannabis extracts decrease the levels of proinflammatory molecules COX2, IL-6, and IL-8 via transcriptional suppression or miRNA-mediated silencing, highlighting their potential against COVID-19-associated cytokine storm syndrome.

15.
Molecules ; 28(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37764262

RESUMEN

Inflammation is a natural response of the body to signals of tissue damage or infection caused by pathogens. However, when it becomes imbalanced, it can lead to various disorders such as cancer, obesity, cardiovascular problems, neurological conditions, and diabetes. The endocannabinoid system, which is present throughout the body, plays a regulatory role in different organs and influences functions such as food intake, pain perception, stress response, glucose tolerance, inflammation, cell growth and specialization, and metabolism. Phytocannabinoids derived from Cannabis sativa can interact with this system and affect its functioning. In this study, we investigate the mechanisms underlying the anti-inflammatory effects of three minor phytocannabinoids including tetrahydrocannabivarin (THCV), cannabichromene (CBC), and cannabinol (CBN) using an in vitro system. We pre-treated THP-1 macrophages with different doses of phytocannabinoids or vehicle for one hour, followed by treating the cells with 500 ng/mL of LPS or leaving them untreated for three hours. To induce the second phase of NLRP3 inflammasome activation, LPS-treated cells were further treated with 5 mM ATP for 30 min. Our findings suggest that the mitigation of the PANX1/P2X7 axis plays a significant role in the anti-inflammatory effects of THCV and CBC on NLRP3 inflammasome activation. Additionally, we observed that CBC and THCV could also downregulate the IL-6/TYK-2/STAT-3 pathway. Furthermore, we discovered that CBN may exert its inhibitory impact on the assembly of the NLRP3 inflammasome by reducing PANX1 cleavage. Interestingly, we also found that the elevated ADAR1 transcript responded negatively to THCV and CBC in LPS-macrophages, indicating a potential involvement of ADAR1 in the anti-inflammatory effects of these two phytocannabinoids. THCV and CBN inhibit P-NF-κB, downregulating proinflammatory gene transcription. In summary, THCV, CBC, and CBN exert anti-inflammatory effects by influencing different stages of gene expression: transcription, post-transcriptional regulation, translation, and post-translational regulation.


Asunto(s)
Cannabinol , Inflamasomas , Humanos , Lipopolisacáridos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR , Inflamación/tratamiento farmacológico , Macrófagos , Antiinflamatorios/farmacología , Proteínas del Tejido Nervioso , Conexinas
16.
Curr Issues Mol Biol ; 45(8): 6743-6774, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37623246

RESUMEN

Intestinal inflammation and dysbiosis can lead to inflammatory bowel diseases (IBD) and systemic inflammation, affecting multiple organs. Developing novel anti-inflammatory therapeutics is crucial for preventing IBD progression. Serotonin receptor type 2A (5-HT2A) ligands, including psilocybin (Psi), 4-Acetoxy-N,N-dimethyltryptamine (4-AcO-DMT), and ketanserin (Ket), along with transient receptor potential (TRP) channel ligands like capsaicin (Cap), curcumin (Cur), and eugenol (Eug), show promise as anti-inflammatory agents. In this study, we investigated the cytotoxic and anti-inflammatory effects of Psi, 4-AcO-DMT, Ket, Cap, Cur, and Eug on human small intestinal epithelial cells (HSEIC). HSEIC were exposed to tumor necrosis factor (TNF)-α and interferon (IFN)-γ for 24 h to induce an inflammatory response, followed by treatment with each compound at varying doses (0-800 µM) for 24 to 96 h. The cytotoxicity was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and protein expression by Western blot (WB) analysis. As single treatments, Psi (40 µM), Cur (0.5 µM), and Eug (50 µM) significantly reduced COX-2 levels without cytotoxic effects. When combined, Psi (40 µM) and Cur (0.5 µM) exhibited synergy, resulting in a substantial decrease in COX-2 protein levels (-28× fold change), although the reduction in IL-6 was less pronounced (-1.6× fold change). Psi (20 µM) and Eug (25 µM) demonstrated the most favorable outcomes, with significant decreases in COX-2 (-19× fold change) and IL-6 (-10× fold change) protein levels. Moreover, the combination of Psi and Eug did not induce cytotoxic effects in vitro at any tested doses. This study is the first to explore the anti-inflammatory potential of psilocybin and 4-AcO-DMT in the intestines while highlighting the potential for synergy between the 5-HT2A and TRP channel ligands, specifically Psi and Eug, in alleviating the TNF-α/IFN-γ-induced inflammatory response in HSEIC. Further investigations should evaluate if the Psi and Eug combination has the therapeutic potential to treat IBD in vivo.

17.
Cancer Genomics Proteomics ; 20(5): 417-432, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37643782

RESUMEN

BACKGROUND/AIM: Lung cancer remains the main culprit in cancer-related mortality worldwide. Transcript fusions play a critical role in the initiation and progression of multiple cancers. Treatment approaches based on specific targeting of discovered driver events, such as mutations in EGFR, and fusions in NTRK, ROS1, and ALK genes led to profound improvements in clinical outcomes. The formation of chimeric proteins due to genomic rearrangements or at the post-transcriptional level is widespread and plays a critical role in tumor initiation and progression. Yet, the fusion landscape of lung cancer remains underexplored. MATERIALS AND METHODS: We used the JAFFA pipeline to discover transcript fusions in early-stage non-small cell lung cancer (NSCLC). The set of detected fusions was further analyzed to identify recurrent events, genes with multiple partners and fusions with high predicted oncogenic potential. Finally, we used a generalized linear model (GLM) to establish statistical associations between fusion occurrences and clinicopathological variables. RNA sequencing was used to discover and characterize transcript fusions in 270 NSCLC samples selected from the Glans-Look specimen repository. The samples were obtained during the early stages of disease prior to the initiation of chemo- or radiotherapy. RESULTS: We identified a set of 792 fusions where 751 were novel, and 33 were recurrent. Four of the 33 recurrent fusions were significantly associated with clinicopathological variables. Several of the fusion partners were represented by well-established oncogenes ERBB4, BRAF, FGFR2, and MET. CONCLUSION: The data presented in this study allow researchers to identify, select, and validate promising candidates for targeted clinical interventions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética
18.
Molecules ; 28(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37446655

RESUMEN

Inflammation is the response of the innate immune system to any type of injury. Although acute inflammation is critical for survival, dysregulation of the innate immune response leads to chronic inflammation. Many synthetic anti-inflammatory drugs have side effects, and thus, natural anti-inflammatory compounds are still needed. Cannabis sativa L. may provide a good source of anti-inflammatory molecules. Here, we tested the anti-inflammatory properties of cannabis extracts and pure cannabinoids in lipopolysaccharide (LPS)-induced inflammation in human THP-1 macrophages. We found that pre-treatment with cannabidiol (CBD), delta-9-tetrahydrocannabinol (THC), or extracts containing high levels of CBD or THC reduced the level of induction of various cytokines. The CBD was more efficient than THC, and the extracts were more efficient than pure cannabinoids. Finally, IL-6, IL-10, and MCP-1 cytokines were most sensitive to pre-treatments with CBD and THC, while IL-1ß, IL-8, and TNF-α were less responsive. Thus, our work demonstrates the potential of the use of cannabinoids or/and cannabis extracts for the reduction of inflammation and establishes IL-6 and MCP-1 as the sensitive markers for the analysis of the effect of cannabinoids on inflammation in macrophages.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Alucinógenos , Humanos , Antiinflamatorios/farmacología , Cannabidiol/análisis , Agonistas de Receptores de Cannabinoides , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Citocinas , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Interleucina-6 , Lipopolisacáridos/toxicidad , Macrófagos , Extractos Vegetales/farmacología
19.
Molecules ; 28(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36985596

RESUMEN

Inflammation is an organism's biological defense mechanism. Acute and chronic inflammation of the body triggers the production of pro- and anti-inflammatory pathways that can affect the content of cytokines in the brain and thus cause brain inflammation. Disorders such as depression and posttraumatic stress disorder (PTSD) are often associated with elevated inflammation. Recently, positive and promising clinical results of psilocybin for the treatment of depression and PTSD were reported. Thus, we decided to test whether psilocybin alone or in combination with eugenol, an anti-inflammatory and antioxidant agent, would prevent the increase in or decrease the content of cytokines in the brain of C57BL/6J mice injected with lipopolysaccharides (LPS). Two experiments were performed, one with pre-treatment of mice through gavage with psilocybin (0.88 mg/kg), eugenol (17.6 mg/kg), or combinations of psilocybin and eugenol (1:10, 1:20, or 1:50), followed by intraperitoneal injection of LPS, and the second, post-treatment, with initial injection with LPS, followed by treatment with psilocybin, eugenol, or their combination. Brain tissues were collected, and cytokines were analyzed by qRT-PCR, Western blot, and ELISA. Data were analyzed with a one-way ANOVA followed by Tukey's post hoc test or with multiple unpaired t-tests. LPS upregulated mRNA expression of COX-2, TNF-α, IL-1ß, and IL-6. All pre-treatments decreased the expression of COX-2 and TNF-α, with psilocybin alone and in 1:50 combination, with eugenol being the most effective. In the post-treatment, all combinations of psilocybin and eugenol were effective in reducing inflammation, with the 1:50 ratio displaying the most prominent results in reducing the mRNA content of tested cytokines. Western blot analysis confirmed the effect on COX-2 and IL-1ß proteins. Finally, the ELISA showed that post-treatment with psilocybin + eugenol (1:50) demonstrated the best results, decreasing the expression of multiple markers including IL-6 and IL-8. This demonstrates the anti-inflammatory effects of a combination of psilocybin and eugenol in the brain of animals with systemically induced inflammation.


Asunto(s)
Encefalitis , Factor de Necrosis Tumoral alfa , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/efectos adversos , Eugenol/farmacología , Eugenol/uso terapéutico , Interleucina-6 , Psilocibina/farmacología , Psilocibina/uso terapéutico , Ciclooxigenasa 2/genética , Ratones Endogámicos C57BL , Citocinas/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/uso terapéutico , ARN Mensajero
20.
Curr Genomics ; 24(4): 197-206, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38169773

RESUMEN

Wheat, a crucial crop for the pursuit of food security, is faced with a plateauing yield projected to fall short of meeting the demands of the exponentially increasing human population. To raise global wheat productivity levels, strong efforts must be made to overcome the problems of (1) climate change-induced heat and drought stress and (2) the genotype-dependent amenability of wheat to tissue culture, which limits the success of recovering genetically engineered plants, especially in elite cultivars. Unfortunately, the mainstream approach of genetically engineering plant protein-coding genes may not be effective in solving these problems as it is difficult to map, annotate, functionally verify, and modulate all existing homeologs and paralogs within wheat's large, complex, allohexaploid genome. Additionally, the quantitative, multi-genic nature of most agronomically important traits furthers the complications faced by this approach. miRNAs are small, noncoding RNAs (sncRNAs) that repress gene expression at the post-transcriptional level, regulating various aspects of plant growth and development. They are gaining popularity as alternative targets of genetic engineering efforts for crop improvement due to their (1) highly conserved nature, which facilitates reasonable prediction of their gene targets and phenotypic effects under different expression levels, and (2) the capacity to target multiple genes simultaneously, making them suitable for enhancing complex and multigenic agronomic traits. In this mini-review, we will discuss the biogenesis, manipulation, and potential applications of plant miRNAs in improving wheat's yield, somatic embryogenesis, thermotolerance, and drought-tolerance in response to the problems of plateauing yield, genotype-dependent amenability to tissue culture, and susceptibility to climate change-induced heat and drought stress.  © His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food, 2023.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...