Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 58(7): 1757-1762, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30874213

RESUMEN

Lithium niobate (LN)-based devices are widely used in integrated and nonlinear optics. This material is robust and resistive to high temperatures, which makes the LN-based devices stable, but challenging to fabricate. In this work, we report on the design, manufacturing, and characterization of engineered dielectric media with thin-film LN (TFLN) on top for the coupling and propagation of electromagnetic surface waves at telecommunication wavelengths. The designed one-dimensional photonic crystal (1DPhC) sustains Bloch surface waves (BSWs) at the multilayer-air interface at 1550 nm wavelength with a propagation detected over a distance of 3 mm. The working wavelength and improved BSW propagation parameters open the way for exploration of nonlinear properties of BSW-based devices. It is also expected that these novel devices potentially would be able to modify BSW propagation and coupling by external thermal-electrical stimuli due to the improved quality of the TFLN top layer of 1DPhC.

2.
Light Sci Appl ; 7: 24, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30839622

RESUMEN

We study the directional excitation of optical surface waves controlled by the magnetic field of light. We theoretically predict that a spinning magnetic dipole develops a tunable unidirectional coupling of light to transverse electric (TE) polarized Bloch surface waves (BSWs). Experimentally, we show that the helicity of light projected onto a subwavelength groove milled into the top layer of a 1D photonic crystal (PC) controls the power distribution between two TE-polarized BSWs excited on both sides of the groove. Such a phenomenon is shown to be solely mediated by the helicity of the magnetic optical field, thus revealing a magnetic spin-orbit interaction of light. Remarkably, this magnetic optical effect is clearly observed via a near-field coupler governed by an electric dipole moment: it is of the same order of magnitude as the electric optical effects involved in the coupling. This opens up new degrees of freedom for the manipulation of light and offers desirable and novel opportunities for the development of integrated optical functionalities.

3.
Opt Express ; 25(5): 5710-5715, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28380827

RESUMEN

Bloch surface waves (BSWs) are recently developing alternative to surface plasmon polaritons (SPPs). Due to dramatically enhanced propagation distance and strong field confinement these surface states can be successfully used in on-chip all-optical integrated devices of increased complexity. In this work we propose a highly miniaturized grating based BSW coupler which is gathering launching and directional switching functionalities in a single element. This device allows to control with polarization the propagation direction of Bloch surface waves at subwavelength scale, thus impacting a large panel of domains such as optical circuitry, function design, quantum optics, etc.

4.
Opt Lett ; 41(23): 5616-5619, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27906253

RESUMEN

We present an original type of one-dimensional photonic crystal that includes one anisotropic layer made of a lithium niobate thin film. We demonstrate the versatility of such a device sustaining different Bloch surface waves (BSWs), depending on the orientation of the incident wave. By varying the orientation of the illumination of the multilayer, we measured an angle variation of 7° between the BSWs corresponding to the extraordinary and the ordinary index of the lithium niobate thin film. The potential of such a platform opens the way to novel tunable and active planar optics based on the electro- and thermo-optical properties of lithium niobate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...