Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ArXiv ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38947915

RESUMEN

Background and Objective: Prosthetic heart valve interventions such as TAVR have surged over the past decade, but the associated complication of long-term, life-threatening thrombotic events continues to undermine patient outcomes. Thus, improving thrombogenic risk analysis of TAVR devices is crucial. In vitro studies for thrombogenicity are typically difficult to perform. However, revised ISO testing standards include computational testing for thrombogenic risk assessment of cardiovascular implants. We present a fluid-structure interaction (FSI) approach for assessing thrombogenic risk of prosthetic heart valves. Methods: An FSI framework was implemented via the incompressible computational fluid dynamics multi-physics solver of the Ansys LS-DYNA software. The numerical modeling approach for flow analysis was validated by comparing the derived flow rate of the 29-mm CoreValve device from benchtop testing and orifice areas of commercial TAVR valves in the literature to in silico results. Thrombogenic risk was analyzed by computing stress accumulation (SA) on virtual platelets seeded in the flow fields via Ansys EnSight. The integrated FSI-thrombogenicity methodology was subsequently employed to examine hemodynamics and thrombogenic risk of TAVR devices with two approaches: 1) engineering optimization and 2) clinical assessment. Results: The simulated effective orifice areas of the commercial devices were in the range reported in the literature. The flow rates from the in vitro flow testing matched well with the in silico results. The approach was used to analyze the effect of various TAVR leaflet designs on hemodynamics. Platelets experienced different magnitudes of SA along their trajectories as they flowed past each design. Post-TAVR deployment hemodynamics in patient-specific bicuspid aortic valve anatomies revealed varying degrees of thrombogenic risk for these patients, despite being clinically defined as "mild" paravalvular leak. Conclusions: Our methodology can be used to improve the thromboresistance of prosthetic valves from the initial design stage to the clinic. It allows for unparalleled optimization of devices, uncovering key TAVR leaflet design parameters that can be used to mitigate thrombogenic risk, in addition to patient-specific modeling to evaluate device performance. This work demonstrates the utility of advanced in silico analysis of TAVR devices that can be utilized for thrombogenic risk assessment of other blood recirculating devices.

2.
medRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585979

RESUMEN

Transcatheter aortic valve replacement (TAVR) has rapidly displaced surgical aortic valve replacement (SAVR). However, certain post-TAVR complications persist, with cardiac conduction abnormalities (CCA) being one of the major ones. The elevated pressure exerted by the TAVR stent onto the conduction fibers situated between the aortic annulus and the His bundle, in proximity to the atrioventricular (AV) node, may disrupt the cardiac conduction leading to the emergence of CCA. In his study, an in-silico framework was developed to assess the CCA risk, incorporating the effect of a dynamic beating heart and pre-procedural parameters such as implantation depth and preexisting cardiac asynchrony in the new onset of post-TAVR CCA. A self-expandable TAVR device deployment was simulated inside an electro-mechanically coupled beating heart model in five patient scenarios, including three implantation depths, and two preexisting cardiac asynchronies: (i) a right bundle branch block (RBBB) and (ii) a left bundle branch block (LBBB). Subsequently, several biomechanical parameters were analyzed to assess the post-TAVR CCA risk. The results manifested a lower cumulative contact pressure on the conduction fibers following TAVR for aortic deployment (0.018 MPa) compared to baseline (0.29 MPa) and ventricular deployment (0.52 MPa). Notably, the preexisting RBBB demonstrated a higher cumulative contact pressure (0.34 MPa) compared to the baseline and preexisting LBBB (0.25 MPa). Deeper implantation and preexisting RBBB cause higher stresses and contact pressure on the conduction fibers leading to an increased risk of post-TAVR CCA. Conversely, implantation above the MS landmark and preexisting LBBB reduces the risk.

3.
Ann Biomed Eng ; 52(3): 719-733, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38097896

RESUMEN

TAVR has emerged as a standard approach for treating severe aortic stenosis patients. However, it is associated with several clinical complications, including subclinical leaflet thrombosis characterized by Hypoattenuated Leaflet Thickening (HALT). A rigorous analysis of TAVR device thrombogenicity considering anatomical variations is essential for estimating this risk. Clinicians use the Sinotubular Junction (STJ) diameter for TAVR sizing, but there is a paucity of research on its influence on TAVR devices thrombogenicity. A Medtronic Evolut® TAVR device was deployed in three patient models with varying STJ diameters (26, 30, and 34 mm) to evaluate its impact on post-deployment hemodynamics and thrombogenicity, employing a novel computational framework combining prosthesis deployment and fluid-structure interaction analysis. The 30 mm STJ patient case exhibited the best hemodynamic performance: 5.94 mmHg mean transvalvular pressure gradient (TPG), 2.64 cm2 mean geometric orifice area (GOA), and the lowest mean residence time (TR)-indicating a reduced thrombogenic risk; 26 mm STJ exhibited a 10 % reduction in GOA and a 35% increase in mean TPG compared to the 30 mm STJ; 34 mm STJ depicted hemodynamics comparable to the 30 mm STJ, but with a 6% increase in TR and elevated platelet stress accumulation. A smaller STJ size impairs adequate expansion of the TAVR stent, which may lead to suboptimal hemodynamic performance. Conversely, a larger STJ size marginally enhances the hemodynamic performance but increases the risk of TAVR leaflet thrombosis. Such analysis can aid pre-procedural planning and minimize the risk of TAVR leaflet thrombosis.


Asunto(s)
Estenosis de la Válvula Aórtica , Prótesis Valvulares Cardíacas , Trombosis , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Válvula Aórtica/cirugía , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Aorta Torácica , Hemodinámica , Trombosis/etiología , Estenosis de la Válvula Aórtica/cirugía , Prótesis Valvulares Cardíacas/efectos adversos , Resultado del Tratamiento
4.
medRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014278

RESUMEN

Purpose: TAVR has emerged as a standard approach for treating severe aortic stenosis patients. However, it is associated with several clinical complications, including subclinical leaflet thrombosis characterized by Hypoattenuated Leaflet Thickening (HALT). A rigorous analysis of TAVR device thrombogenicity considering anatomical variations is essential for estimating this risk. Clinicians use the Sinotubular Junction (STJ) diameter for TAVR sizing, but there is a paucity of research on its influence on TAVR devices thrombogenicity. Methods: A Medtronic Evolut® TAVR device was deployed in three patient models with varying STJ diameters (26, 30, and 34mm) to evaluate its impact on post-deployment hemodynamics and thrombogenicity, employing a novel computational framework combining prosthesis deployment and fluid- structure interaction analysis. Results: The 30 mm STJ patient case exhibited the best hemodynamic performance: 5.94 mmHg mean transvalvular pressure gradient (TPG), 2.64 cm 2 mean geometric orifice area (GOA), and the lowest mean residence time (T R ) - indicating a reduced thrombogenic risk; 26 mm STJ exhibited a 10 % reduction in GOA and a 35% increase in mean TPG compared to the 30 mm STJ; 34 mm STJ depicted hemodynamics comparable to the 30 mm STJ, but with a 6% increase in T R and elevated platelet stress accumulation. Conclusion: A smaller STJ size impairs adequate expansion of the TAVR stent, which may lead to suboptimal hemodynamic performance. Conversely, a larger STJ size marginally enhances the hemodynamic performance but increases the risk of TAVR leaflet thrombosis. Such analysis can aid pre- procedural planning and minimize the risk of TAVR leaflet thrombosis.

5.
Biomech Model Mechanobiol ; 22(3): 837-850, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36763197

RESUMEN

The lattice Boltzmann method (LBM) has been increasingly used as a stand-alone CFD solver in various biomechanical applications. This study proposes a new fluid-structure interaction (FSI) co-modeling framework for the hemodynamic-structural analysis of compliant aortic valves. Toward that goal, two commercial software packages are integrated using the lattice Boltzmann (LBM) and finite element (FE) methods. The suitability of the LBM-FE hemodynamic FSI is examined in modeling healthy tricuspid and bicuspid aortic valves (TAV and BAV), respectively. In addition, a multi-scale structural approach that has been employed explicitly recognizes the heterogeneous leaflet tissues and differentiates between the collagen fiber network (CFN) embedded within the elastin matrix of the leaflets. The CFN multi-scale tissue model is inspired by monitoring the distribution of the collagen in 15 porcine leaflets. Different simulations have been examined, and structural stresses and resulting hemodynamics are analyzed. We found that LBM-FE FSI approach can produce good predictions for the flow and structural behaviors of TAV and BAV and correlates well with those reported in the literature. The multi-scale heterogeneous CFN tissue structural model enhances our understanding of the mechanical roles of the CFN and the elastin matrix behaviors. The importance of LBM-FE FSI also emerges in its ability to resolve local hemodynamic and structural behaviors. In particular, the diastolic fluctuating velocity phenomenon near the leaflets is explicitly predicted, providing vital information on the flow transient nature. The full closure of the contacting leaflets in BAV is also demonstrated. Accordingly, good structural kinematics and deformations are captured for the entire cardiac cycle.


Asunto(s)
Válvula Aórtica , Enfermedad de la Válvula Aórtica Bicúspide , Porcinos , Animales , Elastina , Hemodinámica , Colágeno , Modelos Cardiovasculares
6.
Bioengineering (Basel) ; 10(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36829682

RESUMEN

In recent years, the treatment of aortic stenosis with TAVR has rapidly expanded to younger and lower-risk patients. However, persistent thrombotic events such as stroke and valve thrombosis expose recipients to severe clinical complications that hamper TAVR's rapid advance. We presented a novel methodology for establishing a link between commonly acceptable mild paravalvular leak (PVL) levels through the device and increased thrombogenic risk. It utilizes in vitro patient-specific TAVR 3D-printed replicas evaluated for hydrodynamic performance. High-resolution µCT scans are used to reconstruct in silico FSI models of these replicas, in which multiple platelet trajectories are studied through the PVL channels to quantify thrombogenicity, showing that those are highly dependent on patient-specific flow conditions within the PVL channels. It demonstrates that platelets have the potential to enter the PVL channels multiple times over successive cardiac cycles, increasing the thrombogenic risk. This cannot be reliably approximated by standard hemodynamic parameters. It highlights the shortcomings of subjectively ranked PVL commonly used in clinical practice by indicating an increased thrombogenic risk in patient cases otherwise classified as mild PVL. It reiterates the need for more rigorous clinical evaluation for properly diagnosing thrombogenic risk in TAVR patients.

7.
Med Phys ; 50(1): 259-273, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36030369

RESUMEN

BACKGROUND: Contrast reflux, which is the retrograde movement of contrast against flow direction, is commonly observed during angiography. Despite a vast body of literature on angiography, the hemodynamic factors affecting contrast reflux have not been studied. Numerous methods have been developed to extract flow from angiography, but the reliability of these methods is not yet sufficient to be of routine clinical use. PURPOSE: To evaluate the effect of baseline blood flow rates and injection conditions on the extent of contrast reflux. To estimate arterial flow rates based on measurement of contrast reflux length. MATERIALS AND METHODS: Iodinated contrast was injected into an idealized tube as well as a physiologically accurate model of the cervico-cerebral vasculature. A total of 194 high-speed angiograms were acquired under varying "blood" flow rates and injection conditions (catheter size, injection rate, and injection time). The length of contrast reflux was compared to the input variables and to dimensionless fluid dynamics parameters at the catheter-tip. Arterial blood flow rates were estimated using contrast reflux length as well as a traditional transit-time method and compared to measured flow rates. RESULTS: Contrast reflux lengths were significantly affected by contrast injection rate (p < 0.0001), baseline blood flow rate (p = 0.0004), and catheter size (p = 0.04), but not by contrast injection time (p = 0.4). Reflux lengths were found to be correlated to dimensionless fluid dynamics parameters by an exponential function (R2  = 0.6-0.99). When considering the entire dataset in unison, flow estimation errors with the reflux-length method (39% ± 33%) were significantly higher (p = 0.003) than the transit-time method (33% ± 36%). However, when subgrouped by catheter, the error with the reflux-length method was substantially reduced and was significantly lower (14% ± 14%, p < 0.0001) than the transit-time method. CONCLUSION: Results show correlations between contrast reflux length and baseline hemodynamic parameters that have not been reported previously. Clinically relevant blood flow rate estimation is feasible by simple measurement of reflux length. In vivo and clinical studies are required to confirm these correlations and to refine the methodology of estimating blood flow by reflux.


Asunto(s)
Arterias , Medios de Contraste , Reproducibilidad de los Resultados , Arterias/fisiología , Angiografía , Inyecciones
8.
Ann Biomed Eng ; 51(1): 58-70, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36042099

RESUMEN

Bicuspid aortic valve (BAV), the most common congenital heart malformation, is characterized by the presence of only two valve leaflets with asymmetrical geometry, resulting in elliptical systolic opening. BAV often leads to early onset of calcific aortic stenosis (AS). Following the rapid expansion of transcatheter aortic valve replacement (TAVR), designed specifically for treating conventional tricuspid AS, BAV patients with AS were initially treated "off-label" with TAVR, which recently gained FDA and CE regulatory approval. Despite its increasing use in BAV, pathological BAV anatomy often leads to complications stemming from mismatched anatomical features. To mitigate these complications, a novel eccentric polymeric TAVR valve incorporating asymmetrical leaflets was designed specifically for BAV anatomies. Computational modeling was used to optimize its asymmetric leaflets for lower functional stresses and improved hemodynamic performance. Deployment and flow were simulated in patient-specific BAV models (n = 6) and compared to a current commercial TAVR valve (Evolut R 29 mm), to assess deployment and flow parameters. The novel eccentric BAV-dedicated valve demonstrated significant improvements in peak systolic orifice area, along with lower jet velocity and wall shear stress (WSS). This feasibility study demonstrates the clinical potential of the first known BAV-dedicated TAVR design, which will foster advancement of patient-dedicated valvular devices.


Asunto(s)
Estenosis de la Válvula Aórtica , Enfermedad de la Válvula Aórtica Bicúspide , Enfermedades de las Válvulas Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Válvula Aórtica , Enfermedades de las Válvulas Cardíacas/cirugía , Modelación Específica para el Paciente , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Resultado del Tratamiento
9.
Cardiovasc Eng Technol ; 13(6): 840-856, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35391657

RESUMEN

INTRODUCTION: Bicuspid aortic valve (BAV) is the most common congenital cardiac malformation, which had been treated off-label by transcatheter aortic valve replacement (TAVR) procedure for several years, until its recent approval by the Food and Drug Administration (FDA) and Conformité Européenne (CE) to treat BAVs. Post-TAVR complications tend to get exacerbated in BAV patients due to their inherent aortic root pathologies. Globally, due to the paucity of randomized clinical trials, clinicians still favor surgical AVR as the primary treatment option for BAV patients. While this warrants longer term studies of TAVR outcomes in BAV patient cohorts, in vitro experiments and in silico computational modeling can be used to guide the surgical community in assessing the feasibility of TAVR in BAV patients. Our goal is to combine these techniques in order to create a modeling framework for optimizing pre-procedural planning and minimize post-procedural complications. MATERIALS AND METHODS: Patient-specific in silico models and 3D printed replicas of 3 BAV patients with different degrees of post-TAVR paravalvular leakage (PVL) were created. Patient-specific TAVR device deployment was modeled in silico and in vitro-following the clinical procedures performed in these patients. Computational fluid dynamics simulations and in vitro flow studies were performed in order to obtain the degrees of PVL in these models. RESULTS: PVL degree and locations were consistent with the clinical data. Cross-validation comparing the stent deformation and the flow parameters between the in silico and the in vitro models demonstrated good agreement. CONCLUSION: The current framework illustrates the potential of using simulations and 3D printed models for pre-TAVR planning and assessing post-TAVR complications in BAV patients.


Asunto(s)
Estenosis de la Válvula Aórtica , Enfermedad de la Válvula Aórtica Bicúspide , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Simulación por Computador , Hidrodinámica , Estenosis de la Válvula Aórtica/cirugía , Resultado del Tratamiento
10.
J Biomech Eng ; 144(6)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35318480

RESUMEN

Tissue-based transcatheter aortic valve (AV) replacement (TAVR) devices have been a breakthrough approach for treating aortic valve stenosis. However, with the expansion of TAVR to younger and lower risk patients, issues of long-term durability and thrombosis persist. Recent advances in polymeric valve technology facilitate designing more durable valves with minimal in vivo adverse reactions. We introduce our second-generation polymeric transcatheter aortic valve (TAV) device, designed and optimized to address these issues. We present the optimization process of the device, wherein each aspect of device deployment and functionality was optimized for performance, including unique considerations of polymeric technologies for reducing the volume of the polymer material for lower crimped delivery profiles. The stent frame was optimized to generate larger radial forces with lower material volumes, securing robust deployment and anchoring. The leaflet shape, combined with varying leaflets thickness, was optimized for reducing the flexural cyclic stresses and the valve's hydrodynamics. Our first-generation polymeric device already demonstrated that its hydrodynamic performance meets and exceeds tissue devices for both ISO standard and patient-specific in vitro scenarios. The valve already reached 900 × 106 cycles of accelerated durability testing, equivalent to over 20 years in a patient. The optimization framework and technology led to the second generation of polymeric TAV design- currently undergoing in vitro hydrodynamic testing and following in vivo animal trials. As TAVR use is rapidly expanding, our rigorous bio-engineering optimization methodology and advanced polymer technology serve to establish polymeric TAV technology as a viable alternative to the challenges facing existing tissue-based TAV technology.


Asunto(s)
Estenosis de la Válvula Aórtica , Prótesis Valvulares Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Animales , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Prótesis Valvulares Cardíacas/efectos adversos , Humanos , Polímeros
11.
Artif Organs ; 46(7): 1305-1317, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35083748

RESUMEN

BACKGROUND: Cardiac conduction abnormality (CCA)- one of the major persistent complications associated with transcatheter aortic valve replacement (TAVR) may lead to permanent pacemaker implantation. Localized stresses exerted by the device frame on the membranous septum (MS) which lies between the aortic annulus and the bundle of His, may disturb the cardiac conduction and cause the resultant CCA. We hypothesize that the area-weighted average maximum principal logarithmic strain (AMPLS) in the MS region can predict the risk of CCA following TAVR. METHODS: Rigorous finite element-based analysis was conducted in two patients (Balloon expandable TAVR recipients) to assess post-TAVR CCA risk. Following the procedure one of the patients required permanent pacemaker (PPM) implantation while the other did not (control case). Patient-specific aortic root was modeled, MS was identified from the CT image, and the TAVR deployment was simulated. Mechanical factors in the MS region such as logarithmic strain, contact force, contact pressure, contact pressure index (CPI) and their time history during the TAVR deployment; and anatomical factors such as MS length, implantation depth, were analyzed. RESULTS: Maximum AMPLS (0.47 and 0.37, respectively), contact force (0.92 N and 0.72 N, respectively), and CPI (3.99 and 2.86, respectively) in the MS region were significantly elevated in the PPM patient as compared to control patient. CONCLUSION: Elevated stresses generated by TAVR devices during deployment appear to correlate with CCA risk, with AMPLS in the MS region emerging as a strong predictor that could be used for preprocedural planning in order to minimize CCA risk.


Asunto(s)
Estenosis de la Válvula Aórtica , Prótesis Valvulares Cardíacas , Marcapaso Artificial , Reemplazo de la Válvula Aórtica Transcatéter , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Estimulación Cardíaca Artificial , Humanos , Marcapaso Artificial/efectos adversos , Medición de Riesgo , Factores de Riesgo , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Resultado del Tratamiento
12.
J Cardiovasc Transl Res ; 15(4): 834-844, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34859367

RESUMEN

Bicuspid aortic valve (BAV), the most common congenital valvular abnormality, generates asymmetric flow patterns and increased stresses on the leaflets that expedite valvular calcification and structural degeneration. Recently adapted for use in BAV patients, TAVR demonstrates promising performance, but post-TAVR complications tend to get exacerbated due to BAV anatomical complexities. Utilizing patient-specific computational modeling, we address some of these complications. The degree and location of post-TAVR PVL was assessed, and the risk of flow-induced thrombogenicity was analyzed in 3 BAV patients - using older generation TAVR devices that were implanted in these patients, and compared them to the performance of the newest generation TAVR devices using in silico patient models. Significant decrease in PVL and thrombogenic potential was observed after implantation of the newest generation device. The current work demonstrates the potential of using simulations in pre-procedural planning to assess post-TAVR complications, and compare the performance of different devices to achieve better clinical outcomes. Patient-specific computational framework to assess post-transcatheter bicuspid aortic valve replacement paravalvular leakage and flow-induced thrombogenic complications and compare device performances.


Asunto(s)
Estenosis de la Válvula Aórtica , Enfermedad de la Válvula Aórtica Bicúspide , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Modelación Específica para el Paciente , Simulación por Computador , Estenosis de la Válvula Aórtica/cirugía , Resultado del Tratamiento
13.
Interv Neuroradiol ; 27(5): 695-702, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33631993

RESUMEN

BACKGROUND: During diagnostic cerebral angiography, the contrast bolus injected into a vessel can cause substantial changes in baseline pressures and flows. One potential, and serious complication is the re-rupture of aneurysms due to these injections. The goals of this in vitro study were to evaluate the effect of injection conditions on intraneurysmal pressure changes during angiography. METHODS: A silicone replica of a complete circle of Willis model with ophthalmic, anterior communicating, and basilar tip aneurysms was connected to a physiologically accurate flow pump. Contrast injections were performed under different conditions (carotid or vertebral vessel imaging, catheter diameter, injection rate, injection time, and arterial blood flow rate) and the pressure in each aneurysm was recorded before and during each injection. The effect of injection conditions on percentage increase in aneurysm pressures was statistically assessed. Additionally, the effect of the distance between the aneurysm and the catheter-tip on aneurysmal pressures was assessed. RESULTS: Mean intraneurysmal pressures during injection (84.5 ± 10.8 mmHg) were significantly higher than pre-injection pressures (80.4 ± 10.6 mmHg, p < 0.0001). Only 3 of the 5 conditions - carotid injections, higher injection rates, and smaller catheter diameters - significantly increased intraneurysmal pressures. The catheter-tip distance showed no correlation to pressure increases. CONCLUSIONS: Increasing contrast injection rates and decreasing catheter diameters are correlated to intraneurysmal pressure increases during angiography irrespective of the distance to the catheter tip. Future in vivo studies are required to confirm these findings and determine whether the amplitude of pressure increases with commonly used injection rates can be clinically detrimental.


Asunto(s)
Aneurisma Intracraneal , Dispositivos de Acceso Vascular , Arterias , Catéteres , Angiografía Cerebral , Medios de Contraste , Humanos , Aneurisma Intracraneal/diagnóstico por imagen
14.
Artif Organs ; 45(4): E41-E52, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33031563

RESUMEN

Following in vitro tests established for surgical prosthetic heart valves, transcatheter aortic valves (TAV) are similarly tested in idealized geometries-excluding effects that may hamper TAVR performance in situ. Testing in vitro in pulse duplicator systems that incorporated patient-specific replicas would enhance the testing veracity by bringing it closer to the clinical scenario. To that end we compare TAV hemodynamic performance tested in idealized geometries according to the ISO standard (baseline performance) to that obtained by testing the TAVs following deployment in patient-specific replicas. Balloon-expandable (n = 2) and self-expandable (n = 3) TAVs were tested in an idealized geometry in mock-circulation system (following ISO 5840-3 guidelines) and compared to the measurements in a dedicated mock-circulation system adapted for the five patient-specific replicas. Patient-specific deployments resulted in a decline in performance as compared to the baseline idealized testing, as well as a variation in performance that depended on the design features of each device that was further correlated with the radial expansion and eccentricity of the deployed TAV stent (obtained with CT-scans of the deployed valves). By excluding the deployment effects in irregular geometries, the current idealized ISO testing is limited to characterize the baseline device performance. Utilizing patient-specific anatomic contours provides performance indicators under more stringent conditions likely encountered in vivo. It has the potential to enhance testing and development complementary to the ISO standard, for improved TAV safety and effectiveness.


Asunto(s)
Estenosis de la Válvula Aórtica/cirugía , Reemplazo de la Válvula Aórtica Transcatéter/normas , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Humanos , Hidrodinámica , Técnicas In Vitro , Modelos Cardiovasculares , Selección de Paciente , Diseño de Prótesis , Falla de Prótesis , Stents , Tomografía Computarizada por Rayos X
15.
J Neurotrauma ; 37(18): 2014-2022, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32458719

RESUMEN

Optimal surgical management of spine trauma will restore blood flow to the ischemic spinal cord. However, spine stabilization may also further exacerbate injury by inducing ischemia. Current electrophysiological technology is not capable of detecting acute changes in spinal cord blood flow or localizing ischemia. Further, alerts are delayed and unreliable. We developed an epidural optical device capable of directly measuring and immediately detecting changes in spinal cord blood flow using diffuse correlation spectroscopy (DCS). Herein we test the hypothesis that our device can continuously monitor blood flow during spine distraction. Additionally, we demonstrate the ability of our device to monitor multiple sites along the spinal cord and axially resolve changes in spinal cord blood flow. DCS-measured blood flow in the spinal cord was monitored at up to three spatial locations (cranial to, at, and caudal to the distraction site) during surgical distraction in a sheep model. Distraction was halted at 50% of baseline blood flow at the distraction site. We were able to monitor blood flow with DCS in multiple regions of the spinal cord simultaneously at ∼1 Hz. The distraction site had a greater decrement in flow than sites cranial to the injury (median -40 vs. -7%,). This pilot study demonstrated high temporal resolution and the capacity to axially resolve changes in spinal cord blood flow at and remote from the site of distraction. These early results suggest that this technology may assist in the surgical management of spine trauma and in corrective surgery of the spine.


Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Potenciales Evocados Motores/fisiología , Osteogénesis por Distracción/efectos adversos , Flujo Sanguíneo Regional/fisiología , Isquemia de la Médula Espinal/fisiopatología , Animales , Femenino , Tecnología de Fibra Óptica/métodos , Hemodinámica/fisiología , Vértebras Lumbares/irrigación sanguínea , Vértebras Lumbares/lesiones , Masculino , Proyectos Piloto , Ovinos , Isquemia de la Médula Espinal/diagnóstico por imagen , Vértebras Torácicas/irrigación sanguínea , Vértebras Torácicas/lesiones
16.
ASAIO J ; 66(2): 190-198, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30845067

RESUMEN

Transcatheter aortic valve replacement (TAVR) has emerged as an effective therapy for the unmet clinical need of inoperable patients with severe aortic stenosis (AS). Current clinically used tissue TAVR valves suffer from limited durability that hampers TAVR's rapid expansion to younger, lower risk patients. Polymeric TAVR valves optimized for hemodynamic performance, hemocompatibility, extended durability, and resistance to calcific degeneration offer a viable solution to this challenge. We present extensive in vitro durability and stability testing of a novel polymeric TAVR valve (PolyNova valve) using 1) accelerated wear testing (AWT, ISO 5840); 2) calcification susceptibility (in the AWT)-compared with clinically used tissue valves; and 3) extended crimping stability (valves crimped to 16 Fr for 8 days). Hydrodynamic testing was performed every 50M cycles. The valves were also evaluated visually for structural integrity and by scanning electron microscopy for evaluation of surface damage in the micro-scale. Calcium and phosphorus deposition was evaluated using micro-computed tomography (µCT) and inductive coupled plasma spectroscopy. The valves passed 400M cycles in the AWT without failure. The effective orifice area kept stable at 1.8 cm with a desired gradual decrease in transvalvular pressure gradient and regurgitation (10.4 mm Hg and 6.9%, respectively). Calcium and phosphorus deposition was significantly lower in the polymeric valve: down by a factor of 85 and 16, respectively-as compared to a tissue valve. Following the extended crimping testing, no tears nor surface damage were evident. The results of this study demonstrate the potential of a polymeric TAVR valve to be a viable alternative to tissue-based TAVR valves.


Asunto(s)
Prótesis Valvulares Cardíacas , Ensayo de Materiales , Estirenos , Estenosis de la Válvula Aórtica/cirugía , Calcinosis/etiología , Prótesis Valvulares Cardíacas/efectos adversos , Hemodinámica , Humanos , Técnicas In Vitro , Reemplazo de la Válvula Aórtica Transcatéter/instrumentación , Reemplazo de la Válvula Aórtica Transcatéter/métodos
17.
Ann Biomed Eng ; 47(1): 113-125, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30194551

RESUMEN

Transcatheter aortic valve replacement (TAVR) is a minimally-invasive approach for treating severe aortic stenosis. All clinically-used TAVR valves to date utilize chemically-fixed xenograft as the leaflet material. Inherent limitation of the tissue (e.g., calcific degeneration) motivates the search for alternative leaflet material. Here we introduce a novel polymeric TAVR valve that was designed to address the limitations of tissue-valves. In this study, we experimentally evaluated the hemodynamic performance of the valve and compared its performance to clinically-used valves: a gold standard surgical tissue valve, and a TAVR valve. Our comparative testing protocols included: (i) baseline hydrodynamics (ISO:5840-3), (ii) complementary patient-specific hydrodynamics in a dedicated system, and (iii) thrombogenicity. The patient-specific testing system facilitated comparing TAVR valves performance under more realistic conditions. Baseline hydrodynamics results at CO 4-7 L/min showed superior effective orifice area (EOA) for the polymer valve, most-notably as compared to the reference TAVR valve. Regurgitation fraction was higher in the polymeric valve, but within the ISO minimum requirements. Thrombogenicity trends followed the EOA results with the polymeric valve being the least thrombogenic, and clinical TAVR being the most. Hemodynamic-wise, the results strongly indicate that our polymeric TAVR valve can outperform tissue valves.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Bioprótesis , Prótesis Valvulares Cardíacas , Hemodinámica , Modelos Cardiovasculares , Reemplazo de la Válvula Aórtica Transcatéter , Válvula Aórtica/patología , Válvula Aórtica/fisiopatología , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/fisiopatología , Estenosis de la Válvula Aórtica/cirugía , Humanos , Trombosis/etiología , Trombosis/patología , Trombosis/fisiopatología , Trombosis/prevención & control
18.
Expert Rev Med Devices ; 15(11): 771-791, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30318937

RESUMEN

INTRODUCTION: Transcatheter aortic valve replacement (TAVR) has emerged as an effective minimally-invasive alternative to surgical valve replacement in medium- to high-risk, elderly patients with calcific aortic valve disease and severe aortic stenosis. The rapid growth of the TAVR devices market has led to a high variety of designs, each aiming to address persistent complications associated with TAVR valves that may hamper the anticipated expansion of TAVR utility. AREAS COVERED: Here we outline the challenges and the technical demands that TAVR devices need to address for achieving the desired expansion, and review design aspects of selected, latest generation, TAVR valves of both clinically-used and investigational devices. We further review in detail some of the up-to-date modeling and testing approaches for TAVR, both computationally and experimentally, and additionally discuss those as complementary approaches to the ISO 5840-3 standard. A comprehensive survey of the prior and up-to-date literature was conducted to cover the most pertaining issues and challenges that TAVR technology faces. EXPERT COMMENTARY: The expansion of TAVR over SAVR and to new indications seems more promising than ever. With new challenges to come, new TAV design approaches, and materials used, are expected to emerge, and novel testing/modeling methods to be developed.


Asunto(s)
Diseño de Prótesis , Reemplazo de la Válvula Aórtica Transcatéter , Animales , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/terapia , Calcinosis/terapia , Prótesis Valvulares Cardíacas , Humanos , Uso Fuera de lo Indicado , Polímeros/química , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos
19.
Cardiovasc Eng Technol ; 9(3): 339-350, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29654509

RESUMEN

Transcatheter aortic valve replacement (TAVR) is an over-the-wire procedure for treatment of severe aortic stenosis (AS). TAVR valves are conventionally tested using simplified left heart simulators (LHS). While those provide baseline performance reliably, their aortic root geometries are far from the anatomical in situ configuration, often overestimating the valves' performance. We report on a novel benchtop patient-specific arterial replicator designed for testing TAVR and training interventional cardiologists in the procedure. The Replicator is an accurate model of the human upper body vasculature for training physicians in percutaneous interventions. It comprises of fully-automated Windkessel mechanism to recreate physiological flow conditions. Calcified aortic valve models were fabricated and incorporated into the Replicator, then tested for performing TAVR procedure by an experienced cardiologist using the Inovare valve. EOA, pressures, and angiograms were monitored pre- and post-TAVR. A St. Jude mechanical valve was tested as a reference that is less affected by the AS anatomy. Results in the Replicator of both valves were compared to the performance in a commercial ISO-compliant LHS. The AS anatomy in the Replicator resulted in a significant decrease of the TAVR valve performance relative to the simplified LHS, with EOA and transvalvular pressures comparable to clinical data. Minor change was seen in the mechanical valve performance. The Replicator showed to be an effective platform for TAVR testing. Unlike a simplified geometric anatomy LHS, it conservatively provides clinically-relevant outcomes and complement it. The Replicator can be most valuable for testing new valves under challenging patient anatomies, physicians training, and procedural planning.


Asunto(s)
Aorta/cirugía , Estenosis de la Válvula Aórtica/cirugía , Válvula Aórtica/patología , Válvula Aórtica/cirugía , Calcinosis/cirugía , Prótesis Valvulares Cardíacas , Ensayo de Materiales/métodos , Modelos Anatómicos , Modelos Cardiovasculares , Reemplazo de la Válvula Aórtica Transcatéter/instrumentación , Aorta/diagnóstico por imagen , Aorta/fisiopatología , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/fisiopatología , Insuficiencia de la Válvula Aórtica/etiología , Insuficiencia de la Válvula Aórtica/fisiopatología , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/fisiopatología , Aortografía/métodos , Calcinosis/diagnóstico por imagen , Calcinosis/fisiopatología , Cardiólogos/educación , Angiografía por Tomografía Computarizada , Educación de Postgrado en Medicina/métodos , Hemodinámica , Humanos , Arteria Ilíaca/diagnóstico por imagen , Modelación Específica para el Paciente , Impresión Tridimensional , Diseño de Prótesis , Entrenamiento Simulado/métodos , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Reemplazo de la Válvula Aórtica Transcatéter/educación
20.
Cardiovasc Eng Technol ; 9(2): 226-239, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29497965

RESUMEN

Cerebral angiography involves the antegrade injection of contrast media through a catheter into the vasculature to visualize the region of interest under X-ray imaging. Depending on the injection and blood flow parameters, the bolus of contrast can propagate in the upstream direction and proximal to the catheter tip, at which point contrast is said to have refluxed. In this in vitro study, we investigate the relationship of fundamental hemodynamic variables to this phenomenon. Contrast injections were carried out under steady and pulsatile flow using various vessel diameters, catheter sizes, working fluid flow rates, and injection rates. The distance from the catheter tip to the proximal edge of the contrast bolus, called reflux length, was measured on the angiograms; the relation of this reflux length to different hemodynamic parameters was evaluated. Results show that contrast reflux occurs when the pressure distal to the catheter tip increases to be greater than the pressure proximal to the catheter tip. The ratio of this pressure difference to the baseline flow rate, called reflux resistance here, was linearly correlated to the normalized reflux length (reflux length/vessel diameter). Further, the ratio of blood flow to contrast fluid momentums, called the Craya-Curtet number, was correlated to the normalized reflux length via a sigmoid function. A sigmoid function was also found to be representative of the relationship between the ratio of the Reynolds numbers of blood flow to contrast and the normalized reflux length. As described by previous reports, catheter based contrast injections cause substantial increases in local flow and pressure. Contrast reflux should generally be avoided during standard antegrade angiography. Our study shows two specific correlations between contrast reflux length and baseline and intra-injection parameters that have not been published previously. Further studies need to be conducted to fully characterize the phenomena and to extract reliable indicators of clinical utility. Parameters relevant to cerebral angiography are studied here, but the essential principles are applicable to all angiographic procedures involving antegrade catheter injections.


Asunto(s)
Arterias/fisiología , Presión Sanguínea , Angiografía Cerebral/métodos , Medios de Contraste/administración & dosificación , Arterias/anatomía & histología , Velocidad del Flujo Sanguíneo , Angiografía Cerebral/instrumentación , Simulación por Computador , Humanos , Inyecciones Intraarteriales , Modelos Anatómicos , Modelos Cardiovasculares , Flujo Pulsátil , Factores de Tiempo , Dispositivos de Acceso Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...