Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
medRxiv ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39148827

RESUMEN

Study Objectives: To investigate whether a foundational transformer model using 8-hour, multichannel data from polysomnograms can outperform existing artificial intelligence (AI) methods for sleep stage classification. Methods: We utilized the Sleep Heart Health Study (SHHS) visits 1 and 2 for training and validation and the Multi-Ethnic Study of Atherosclerosis (MESA) for testing of our model. We trained a self-supervised foundational transformer (called PFTSleep) that encodes 8-hour long sleep studies at 125 Hz with 7 signals including brain, movement, cardiac, oxygen, and respiratory channels. These encodings are used as input for training of an additional model to classify sleep stages, without adjusting the weights of the foundational transformer. We compared our results to existing AI methods that did not utilize 8-hour data or the full set of signals but did report evaluation metrics for the SHHS dataset. Results: We trained and validated a model with 8,444 sleep studies with 7 signals including brain, movement, cardiac, oxygen, and respiratory channels and tested on an additional 2,055 studies. In total, we trained and tested 587,944 hours of sleep study signal data. Area under the precision recall curve (AUPRC) scores were 0.82, 0.40, 0.53, 0.75, and 0.82 and area under the receiving operating characteristics curve (AUROC) scores were 0.99, 0.95, 0.96, 0.98, and 0.99 for wake, N1, N2, N3, and REM, respectively, on the SHHS validation set. For MESA, the AUPRC scores were 0.56, 0.16, 0.40, 0.45, and 0.65 and AUROC scores were 0.94, 0.77, 0.87, 0.91, and 0.96, respectively. Our model was compared to the longest context window state-of-the-art model and showed increases in macro evaluation scores, notably sensitivity (3.7% increase) and multi-class REM (3.39% increase) and wake (0.97% increase) F1 scores. Conclusions: Utilizing full night, multi-channel PSG data encodings derived from a foundational transformer improve sleep stage classification over existing methods.

2.
NPJ Digit Med ; 7(1): 226, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181999

RESUMEN

Congenital long QT syndrome (LQTS) diagnosis is complicated by limited genetic testing at scale, low prevalence, and normal QT corrected interval in patients with high-risk genotypes. We developed a deep learning approach combining electrocardiogram (ECG) waveform and electronic health record data to assess whether patients had pathogenic variants causing LQTS. We defined patients with high-risk genotypes as having ≥1 pathogenic variant in one of the LQTS-susceptibility genes. We trained the model using data from United Kingdom Biobank (UKBB) and then fine-tuned in a racially/ethnically diverse cohort using Mount Sinai BioMe Biobank. Following group-stratified 5-fold splitting, the fine-tuned model achieved area under the precision-recall curve of 0.29 (95% confidence interval [CI] 0.28-0.29) and area under the receiver operating curve of 0.83 (0.82-0.83) on independent testing data from BioMe. Multimodal fusion learning has promise to identify individuals with pathogenic genetic mutations to enable patient prioritization for further work up.

3.
medRxiv ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39148835

RESUMEN

Purpose: Intravenous fluids are mainstay of management of acute kidney injury (AKI) after sepsis but can cause fluid overload. Recent literature shows that restrictive fluid strategy may be beneficial in some patients with AKI, however, identifying these patients is challenging. We aimed to develop and validate a machine learning algorithm to identify patients who would benefit from a restrictive fluid strategy. Methods: We included patients with sepsis who developed AKI within 48 hours of ICU admission and defined restrictive fluid strategy as receiving <500mL fluids within 24 hours after AKI. Our primary outcome was early AKI reversal within 48 hours of AKI onset, and secondary outcomes included sustained AKI reversal and major adverse kidney events (MAKE) at discharge. We used a causal forest, a machine learning algorithm to estimate individual treatment effects and policy tree algorithm to identify patients who would benefit by restrictive fluid strategy. We developed the algorithm in MIMIC-IV and validated it in eICU database. Results: Among 2,091 patients in the external validation cohort, policy tree recommended restrictive fluids for 88.2%. Among these, patients who received restrictive fluids demonstrated significantly higher rate of early AKI reversal (48.2% vs 39.6%, p<0.001), sustained AKI reversal (36.7% vs 27.4%, p<0.001) and lower rates of MAKE by discharge (29.3% vs 35.1%, p=0.019). These results were consistent in adjusted analysis. Conclusion: Policy tree based on causal machine learning can identify septic patients with AKI who benefit from a restrictive fluid strategy. This approach needs to be validated in prospective trials.

4.
J Am Med Inform Assoc ; 31(9): 2097-2102, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38687616

RESUMEN

OBJECTIVES: The study developed framework that leverages an open-source Large Language Model (LLM) to enable clinicians to ask plain-language questions about a patient's entire echocardiogram report history. This approach is intended to streamline the extraction of clinical insights from multiple echocardiogram reports, particularly in patients with complex cardiac diseases, thereby enhancing both patient care and research efficiency. MATERIALS AND METHODS: Data from over 10 years were collected, comprising echocardiogram reports from patients with more than 10 echocardiograms on file at the Mount Sinai Health System. These reports were converted into a single document per patient for analysis, broken down into snippets and relevant snippets were retrieved using text similarity measures. The LLaMA-2 70B model was employed for analyzing the text using a specially crafted prompt. The model's performance was evaluated against ground-truth answers created by faculty cardiologists. RESULTS: The study analyzed 432 reports from 37 patients for a total of 100 question-answer pairs. The LLM correctly answered 90% questions, with accuracies of 83% for temporality, 93% for severity assessment, 84% for intervention identification, and 100% for diagnosis retrieval. Errors mainly stemmed from the LLM's inherent limitations, such as misinterpreting numbers or hallucinations. CONCLUSION: The study demonstrates the feasibility and effectiveness of using a local, open-source LLM for querying and interpreting echocardiogram report data. This approach offers a significant improvement over traditional keyword-based searches, enabling more contextually relevant and semantically accurate responses; in turn showing promise in enhancing clinical decision-making and research by facilitating more efficient access to complex patient data.


Asunto(s)
Ecocardiografía , Registros Electrónicos de Salud , Procesamiento de Lenguaje Natural , Humanos , Cardiopatías/diagnóstico por imagen , Confidencialidad , Almacenamiento y Recuperación de la Información/métodos
5.
medRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352556

RESUMEN

Importance: Increased intracranial pressure (ICP) is associated with adverse neurological outcomes, but needs invasive monitoring. Objective: Development and validation of an AI approach for detecting increased ICP (aICP) using only non-invasive extracranial physiological waveform data. Design: Retrospective diagnostic study of AI-assisted detection of increased ICP. We developed an AI model using exclusively extracranial waveforms, externally validated it and assessed associations with clinical outcomes. Setting: MIMIC-III Waveform Database (2000-2013), a database derived from patients admitted to an ICU in an academic Boston hospital, was used for development of the aICP model, and to report association with neurologic outcomes. Data from Mount Sinai Hospital (2020-2022) in New York City was used for external validation. Participants: Patients were included if they were older than 18 years, and were monitored with electrocardiograms, arterial blood pressure, respiratory impedance plethysmography and pulse oximetry. Patients who additionally had intracranial pressure monitoring were used for development (N=157) and external validation (N=56). Patients without intracranial monitors were used for association with outcomes (N=1694). Exposures: Extracranial waveforms including electrocardiogram, arterial blood pressure, plethysmography and SpO2. Main Outcomes and Measures: Intracranial pressure > 15 mmHg. Measures were Area under receiver operating characteristic curves (AUROCs), sensitivity, specificity, and accuracy at threshold of 0.5. We calculated odds ratios and p-values for phenotype association. Results: The AUROC was 0.91 (95% CI, 0.90-0.91) on testing and 0.80 (95% CI, 0.80-0.80) on external validation. aICP had accuracy, sensitivity, and specificity of 73.8% (95% CI, 72.0%-75.6%), 99.5% (95% CI 99.3%-99.6%), and 76.9% (95% CI, 74.0-79.8%) on external validation. A ten-percentile increment was associated with stroke (OR=2.12; 95% CI, 1.27-3.13), brain malignancy (OR=1.68; 95% CI, 1.09-2.60), subdural hemorrhage (OR=1.66; 95% CI, 1.07-2.57), intracerebral hemorrhage (OR=1.18; 95% CI, 1.07-1.32), and procedures like percutaneous brain biopsy (OR=1.58; 95% CI, 1.15-2.18) and craniotomy (OR = 1.43; 95% CI, 1.12-1.84; P < 0.05 for all). Conclusions and Relevance: aICP provides accurate, non-invasive estimation of increased ICP, and is associated with neurological outcomes and neurosurgical procedures in patients without intracranial monitoring.

6.
Artif Intell Med ; 148: 102750, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38325922

RESUMEN

Computational subphenotyping, a data-driven approach to understanding disease subtypes, is a prominent topic in medical research. Numerous ongoing studies are dedicated to developing advanced computational subphenotyping methods for cross-sectional data. However, the potential of time-series data has been underexplored until now. Here, we propose a Multivariate Levenshtein Distance (MLD) that can account for address correlation in multiple discrete features over time-series data. Our algorithm has two distinct components: it integrates an optimal threshold score to enhance the sensitivity in discriminating between pairs of instances, and the MLD itself. We have applied the proposed distance metrics on the k-means clustering algorithm to derive temporal subphenotypes from time-series data of biomarkers and treatment administrations from 1039 critically ill patients with COVID-19 and compare its effectiveness to standard methods. In conclusion, the Multivariate Levenshtein Distance metric is a novel method to quantify the distance from multiple discrete features over time-series data and demonstrates superior clustering performance among competing time-series distance metrics.


Asunto(s)
COVID-19 , Enfermedad Crítica , Humanos , Factores de Tiempo , Estudios Transversales , Algoritmos
7.
Ann Intern Med ; 176(10): 1358-1369, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37812781

RESUMEN

BACKGROUND: Substantial effort has been directed toward demonstrating uses of predictive models in health care. However, implementation of these models into clinical practice may influence patient outcomes, which in turn are captured in electronic health record data. As a result, deployed models may affect the predictive ability of current and future models. OBJECTIVE: To estimate changes in predictive model performance with use through 3 common scenarios: model retraining, sequentially implementing 1 model after another, and intervening in response to a model when 2 are simultaneously implemented. DESIGN: Simulation of model implementation and use in critical care settings at various levels of intervention effectiveness and clinician adherence. Models were either trained or retrained after simulated implementation. SETTING: Admissions to the intensive care unit (ICU) at Mount Sinai Health System (New York, New York) and Beth Israel Deaconess Medical Center (Boston, Massachusetts). PATIENTS: 130 000 critical care admissions across both health systems. INTERVENTION: Across 3 scenarios, interventions were simulated at varying levels of clinician adherence and effectiveness. MEASUREMENTS: Statistical measures of performance, including threshold-independent (area under the curve) and threshold-dependent measures. RESULTS: At fixed 90% sensitivity, in scenario 1 a mortality prediction model lost 9% to 39% specificity after retraining once and in scenario 2 a mortality prediction model lost 8% to 15% specificity when created after the implementation of an acute kidney injury (AKI) prediction model; in scenario 3, models for AKI and mortality prediction implemented simultaneously, each led to reduced effective accuracy of the other by 1% to 28%. LIMITATIONS: In real-world practice, the effectiveness of and adherence to model-based recommendations are rarely known in advance. Only binary classifiers for tabular ICU admissions data were simulated. CONCLUSION: In simulated ICU settings, a universally effective model-updating approach for maintaining model performance does not seem to exist. Model use may have to be recorded to maintain viability of predictive modeling. PRIMARY FUNDING SOURCE: National Center for Advancing Translational Sciences.


Asunto(s)
Lesión Renal Aguda , Inteligencia Artificial , Humanos , Unidades de Cuidados Intensivos , Cuidados Críticos , Atención a la Salud
8.
NPJ Digit Med ; 5(1): 180, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513729

RESUMEN

Sample size estimation is a crucial step in experimental design but is understudied in the context of deep learning. Currently, estimating the quantity of labeled data needed to train a classifier to a desired performance, is largely based on prior experience with similar models and problems or on untested heuristics. In many supervised machine learning applications, data labeling can be expensive and time-consuming and would benefit from a more rigorous means of estimating labeling requirements. Here, we study the problem of estimating the minimum sample size of labeled training data necessary for training computer vision models as an exemplar for other deep learning problems. We consider the problem of identifying the minimal number of labeled data points to achieve a generalizable representation of the data, a minimum converging sample (MCS). We use autoencoder loss to estimate the MCS for fully connected neural network classifiers. At sample sizes smaller than the MCS estimate, fully connected networks fail to distinguish classes, and at sample sizes above the MCS estimate, generalizability strongly correlates with the loss function of the autoencoder. We provide an easily accessible, code-free, and dataset-agnostic tool to estimate sample sizes for fully connected networks. Taken together, our findings suggest that MCS and convergence estimation are promising methods to guide sample size estimates for data collection and labeling prior to training deep learning models in computer vision.

9.
Heliyon ; 8(8): e10166, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35958514

RESUMEN

Despite extraordinary international efforts to dampen the spread and understand the mechanisms behind SARS-CoV-2 infections, accessible predictive biomarkers directly applicable in the clinic are yet to be discovered. Recent studies have revealed that diverse types of assays bear limited predictive power for COVID-19 outcomes. Here, we harness the predictive power of chest computed tomography (CT) in combination with plasma cytokines using a machine learning and k-fold cross-validation approach for predicting death during hospitalization and maximum severity degree in COVID-19 patients. Patients (n = 152) from the Mount Sinai Health System in New York with plasma cytokine assessment and a chest CT within five days from admission were included. Demographics, clinical, and laboratory variables, including plasma cytokines (IL-6, IL-8, and TNF-α), were collected from the electronic medical record. We found that CT quantitative alone was better at predicting severity (AUC 0.81) than death (AUC 0.70), while cytokine measurements alone better-predicted death (AUC 0.70) compared to severity (AUC 0.66). When combined, chest CT and plasma cytokines were good predictors of death (AUC 0.78) and maximum severity (AUC 0.82). Finally, we provide a simple scoring system (nomogram) using plasma IL-6, IL-8, TNF-α, ground-glass opacities (GGO) to aerated lung ratio and age as new metrics that may be used to monitor patients upon hospitalization and help physicians make critical decisions and considerations for patients at high risk of death for COVID-19.

10.
Front Cell Infect Microbiol ; 12: 933190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35942057

RESUMEN

Background: Disparate COVID-19 outcomes have been observed between Hispanic, non-Hispanic Black, and White patients. The underlying causes for these disparities are not fully understood. Methods: This was a retrospective study utilizing electronic medical record data from five hospitals within a single academic health system based in New York City. Multivariable logistic regression models were used to identify demographic, clinical, and lab values associated with in-hospital mortality. Results: A total of 3,086 adult patients with self-reported race/ethnicity information presenting to the emergency department and hospitalized with COVID-19 up to April 13, 2020, were included in this study. While older age (multivariable odds ratio (OR) 1.06, 95% CI 1.05-1.07) and baseline hypoxia (multivariable OR 2.71, 95% CI 2.17-3.36) were associated with increased mortality overall and across all races/ethnicities, non-Hispanic Black (median age 67, interquartile range (IQR) 58-76) and Hispanic (median age 63, IQR 50-74) patients were younger and had different comorbidity profiles as compared to non-Hispanic White patients (median age 73, IQR 62-84; p < 0.05 for both comparisons). Among inflammatory markers associated with COVID-19 mortality, there was a significant interaction between the non-Hispanic Black population and interleukin-1-beta (interaction p-value 0.04). Conclusions: This analysis of a multiethnic cohort highlights the need for inclusion and consideration of diverse populations in ongoing COVID-19 trials targeting inflammatory cytokines.


Asunto(s)
COVID-19 , Adulto , Negro o Afroamericano , Anciano , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , SARS-CoV-2 , Población Blanca
11.
Clin J Am Soc Nephrol ; 17(7): 1017-1025, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35667835

RESUMEN

BACKGROUND AND OBJECTIVES: Left ventricular ejection fraction is disrupted in patients on maintenance hemodialysis and can be estimated using deep learning models on electrocardiograms. Smaller sample sizes within this population may be mitigated using transfer learning. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: We identified patients on hemodialysis with transthoracic echocardiograms within 7 days of electrocardiogram using diagnostic/procedure codes. We developed four models: (1) trained from scratch in patients on hemodialysis, (2) pretrained on a publicly available set of natural images (ImageNet), (3) pretrained on all patients not on hemodialysis, and (4) pretrained on patients not on hemodialysis and fine-tuned on patients on hemodialysis. We assessed the ability of the models to classify left ventricular ejection fraction into clinically relevant categories of ≤40%, 41% to ≤50%, and >50%. We compared performance by area under the receiver operating characteristic curve. RESULTS: We extracted 705,075 electrocardiogram:echocardiogram pairs for 158,840 patients not on hemodialysis used for development of models 3 and 4 and n=18,626 electrocardiogram:echocardiogram pairs for 2168 patients on hemodialysis for models 1, 2, and 4. The transfer learning model achieved area under the receiver operating characteristic curves of 0.86, 0.63, and 0.83 in predicting left ventricular ejection fraction categories of ≤40% (n=461), 41%-50% (n=398), and >50% (n=1309), respectively. For the same tasks, model 1 achieved area under the receiver operating characteristic curves of 0.74, 0.55, and 0.71, respectively; model 2 achieved area under the receiver operating characteristic curves of 0.71, 0.55, and 0.69, respectively, and model 3 achieved area under the receiver operating characteristic curves of 0.80, 0.51, and 0.77, respectively. We found that predictions of left ventricular ejection fraction by the transfer learning model were associated with mortality in a Cox regression with an adjusted hazard ratio of 1.29 (95% confidence interval, 1.04 to 1.59). CONCLUSION: A deep learning model can determine left ventricular ejection fraction for patients on hemodialysis following pretraining on electrocardiograms of patients not on hemodialysis. Predictions of low ejection fraction from this model were associated with mortality over a 5-year follow-up period. PODCAST: This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_06_06_CJN16481221.mp3.


Asunto(s)
Diálisis Renal , Función Ventricular Izquierda , Ecocardiografía , Electrocardiografía , Humanos , Diálisis Renal/efectos adversos , Volumen Sistólico
12.
Res Sq ; 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35350196

RESUMEN

Background: Disparate COVID-19 outcomes have been observed between Hispanic, Non-Hispanic Black, and White patients. The underlying causes for these disparities are not fully understood. Methods: This was a retrospective study utilizing electronic medical record data from five hospitals within a single academic health system based in New York City. Multivariable logistic regression models were used to identify demographic, clinical, and lab values associated with in-hospital mortality. Results: 3,086 adult patients with self-reported race/ethnicity information presenting to the emergency department and hospitalized with COVID-19 up to April 13, 2020 were included in this study. While older age (multivariable OR 1.06, 95% CI 1.05-1.07) and baseline hypoxia (multivariable OR 2.71, 95% CI 2.17-3.36) were associated with increased mortality overall and across all races/ethnicities, Non-Hispanic Black (median age 67, IQR 58-76) and Hispanic (median age 63, IQR 50-74) patients were younger and had different comorbidity profiles compared to Non-Hispanic White patients (median age 73, IQR 62-84; p<0.05 for both comparisons). Among inflammatory markers associated with COVID-19 mortality, there was a significant interaction between the Non-Hispanic Black population and interleukin-1-beta (interaction p-value 0.04). Conclusions: This analysis of a multi-ethnic cohort highlights the need for inclusion and consideration of diverse popualtions in ongoing COVID-19 trials targeting inflammatory cytokines.

13.
J Am Med Inform Assoc ; 29(3): 489-499, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35092685

RESUMEN

OBJECTIVE: The novel coronavirus disease 2019 (COVID-19) has heterogenous clinical courses, indicating that there might be distinct subphenotypes in critically ill patients. Although prior research has identified these subphenotypes, the temporal pattern of multiple clinical features has not been considered in cluster models. We aimed to identify temporal subphenotypes in critically ill patients with COVID-19 using a novel sequence cluster analysis and associate them with clinically relevant outcomes. MATERIALS AND METHODS: We analyzed 1036 confirmed critically ill patients with laboratory-confirmed SARS-COV-2 infection admitted to the Mount Sinai Health System in New York city. The agglomerative hierarchical clustering method was used with Levenshtein distance and Ward's minimum variance linkage. RESULTS: We identified four subphenotypes. Subphenotype I (N = 233 [22.5%]) included patients with rapid respirations and a rapid heartbeat but less need for invasive interventions within the first 24 hours, along with a relatively good prognosis. Subphenotype II (N = 418 [40.3%]) represented patients with the least degree of ailments, relatively low mortality, and the highest probability of discharge from the hospital. Subphenotype III (N = 259 [25.0%]) represented patients who experienced clinical deterioration during the first 24 hours of intensive care unit admission, leading to poor outcomes. Subphenotype IV (N = 126 [12.2%]) represented an acute respiratory distress syndrome trajectory with an almost universal need for mechanical ventilation. CONCLUSION: We utilized the sequence cluster analysis to identify clinical subphenotypes in critically ill COVID-19 patients who had distinct temporal patterns and different clinical outcomes. This study points toward the utility of including temporal information in subphenotyping approaches.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Análisis por Conglomerados , Humanos , Unidades de Cuidados Intensivos , SARS-CoV-2
14.
J Virol ; 96(2): e0106321, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34669512

RESUMEN

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System show that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known. We integrated cell biological and physiological analyses of human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence of interleukins (ILs) with clinical findings related to laboratory values in COVID-19 patients to identify plausible mechanisms of cardiac disease in COVID-19 patients. We infected hiPSC-derived cardiomyocytes from healthy human subjects with SARS-CoV-2 in the absence and presence of IL-6 and IL-1ß. Infection resulted in increased numbers of multinucleated cells. Interleukin treatment and infection resulted in disorganization of myofibrils, extracellular release of troponin I, and reduced and erratic beating. Infection resulted in decreased expression of mRNA encoding key proteins of the cardiomyocyte contractile apparatus. Although interleukins did not increase the extent of infection, they increased the contractile dysfunction associated with viral infection of cardiomyocytes, resulting in cessation of beating. Clinical data from hospitalized patients from the Mount Sinai Health System show that a significant portion of COVID-19 patients without history of heart disease have elevated troponin and interleukin levels. A substantial subset of these patients showed reduced left ventricular function by echocardiography. Our laboratory observations, combined with the clinical data, indicate that direct effects on cardiomyocytes by interleukins and SARS-CoV-2 infection might underlie heart disease in COVID-19 patients. IMPORTANCE SARS-CoV-2 infects multiple organs, including the heart. Analyses of hospitalized patients show that a substantial number without prior indication of heart disease or comorbidities show significant injury to heart tissue, assessed by increased levels of troponin in blood. We studied the cell biological and physiological effects of virus infection of healthy human iPSC-derived cardiomyocytes in culture. Virus infection with interleukins disorganizes myofibrils, increases cell size and the numbers of multinucleated cells, and suppresses the expression of proteins of the contractile apparatus. Viral infection of cardiomyocytes in culture triggers release of troponin similar to elevation in levels of COVID-19 patients with heart disease. Viral infection in the presence of interleukins slows down and desynchronizes the beating of cardiomyocytes in culture. The cell-level physiological changes are similar to decreases in left ventricular ejection seen in imaging of patients' hearts. These observations suggest that direct injury to heart tissue by virus can be one underlying cause of heart disease in COVID-19.


Asunto(s)
COVID-19/inmunología , Células Madre Pluripotentes Inducidas , Interleucina-10/inmunología , Interleucina-1beta/inmunología , Interleucina-6/inmunología , Miocitos Cardíacos , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/virología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/patología , Miocitos Cardíacos/virología
15.
medRxiv ; 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34671777

RESUMEN

Despite extraordinary international efforts to dampen the spread and understand the mechanisms behind SARS-CoV-2 infections, accessible predictive biomarkers directly applicable in the clinic are yet to be discovered. Recent studies have revealed that diverse types of assays bear limited predictive power for COVID-19 outcomes. Here, we harness the predictive power of chest CT in combination with plasma cytokines using a machine learning approach for predicting death during hospitalization and maximum severity degree in COVID-19 patients. Patients (n=152) from the Mount Sinai Health System in New York with plasma cytokine assessment and a chest CT within 5 days from admission were included. Demographics, clinical, and laboratory variables, including plasma cytokines (IL-6, IL-8, and TNF-α) were collected from the electronic medical record. We found that chest CT combined with plasma cytokines were good predictors of death (AUC 0.78) and maximum severity (AUC 0.82), whereas CT quantitative was better at predicting severity (AUC 0.81 vs 0.70) while cytokine measurements better predicted death (AUC 0.70 vs 0.66). Finally, we provide a simple scoring system using plasma IL-6, IL-8, TNF-α, GGO to aerated lung ratio and age as novel metrics that may be used to monitor patients upon hospitalization and help physicians make critical decisions and considerations for patients at high risk of death for COVID-19.

16.
medRxiv ; 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34341802

RESUMEN

Federated learning is a technique for training predictive models without sharing patient-level data, thus maintaining data security while allowing inter-institutional collaboration. We used federated learning to predict acute kidney injury within three and seven days of admission, using demographics, comorbidities, vital signs, and laboratory values, in 4029 adults hospitalized with COVID-19 at five sociodemographically diverse New York City hospitals, between March-October 2020. Prediction performance of federated models was generally higher than single-hospital models and was comparable to pooled-data models. In the first use-case in kidney disease, federated learning improved prediction of a common complication of COVID-19, while preserving data privacy.

17.
Sci Rep ; 11(1): 13913, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230510

RESUMEN

The global surge in COVID-19 cases underscores the need for fast, scalable, and reliable testing. Current COVID-19 diagnostic tests are limited by turnaround time, limited availability, or occasional false findings. Here, we developed a machine learning-based framework for predicting individual COVID-19 positive diagnosis relying only on readily-available baseline data, including patient demographics, comorbidities, and common lab values. Leveraging a cohort of 31,739 adults within an academic health system, we trained and tested multiple types of machine learning models, achieving an area under the curve of 0.75. Feature importance analyses highlighted serum calcium levels, temperature, age, lymphocyte count, smoking, hemoglobin levels, aspartate aminotransferase levels, and oxygen saturation as key predictors. Additionally, we developed a single decision tree model that provided an operable method for stratifying sub-populations. Overall, this study provides a proof-of-concept that COVID-19 diagnosis prediction models can be developed using only baseline data. The resulting prediction can complement existing tests to enhance screening and pandemic containment workflows.


Asunto(s)
Prueba de COVID-19 , COVID-19/diagnóstico , Demografía , SARS-CoV-2/patogenicidad , Adulto , COVID-19/epidemiología , Prueba de COVID-19/métodos , Estudios de Cohortes , Demografía/métodos , Humanos , Aprendizaje Automático , Pronóstico , Curva ROC
19.
Genet Med ; 23(5): 942-949, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33531665

RESUMEN

PURPOSE: Use of genomic sequencing is increasing at a pace that requires technological solutions to effectively meet the needs of a growing patient population. We developed GUÍA, a web-based application, to enhance the delivery of genomic results and related clinical information to patients and families. METHODS: GUÍA development occurred in five overlapping phases: formative research, content development, stakeholder/community member input, user interface design, and web application development. Development was informed by formative qualitative research involving parents (N = 22) whose children underwent genomic testing. Participants enrolled in the NYCKidSeq pilot study (N = 18) completed structured feedback interviews post-result disclosure using GUÍA. Genetic specialists, researchers, patients, and community stakeholders provided their perspectives on GUÍA's design to ensure technical, cultural, and literacy appropriateness. RESULTS: NYCKidSeq participants responded positively to the use of GUÍA to deliver their children's results. All participants (N = 10) with previous experience with genetic testing felt GUÍA improved result disclosure, and 17 (94%) participants said the content was clear. CONCLUSION: GUÍA communicates complex genomic information in an understandable and personalized manner. Initial piloting demonstrated GUÍA's utility for families enrolled in the NYCKidSeq pilot study. Findings from the NYCKidSeq clinical trial will provide insight into GUÍA's effectiveness in communicating results among diverse, multilingual populations.


Asunto(s)
Revelación , Asesoramiento Genético , Niño , Pruebas Genéticas , Humanos , Padres , Proyectos Piloto
20.
Trials ; 22(1): 56, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446240

RESUMEN

BACKGROUND: Increasingly, genomics is informing clinical practice, but challenges remain for medical professionals lacking genetics expertise, and in access to and clinical utility of genomic testing for minority and underrepresented populations. The latter is a particularly pernicious problem due to the historical lack of inclusion of racially and ethnically diverse populations in genomic research and genomic medicine. A further challenge is the rapidly changing landscape of genetic tests and considerations of cost, interpretation, and diagnostic yield for emerging modalities like whole-genome sequencing. METHODS: The NYCKidSeq project is a randomized controlled trial recruiting 1130 children and young adults predominantly from Harlem and the Bronx with suspected genetic disorders in three disease categories: neurologic, cardiovascular, and immunologic. Two clinical genetic tests will be performed for each participant, either proband, duo, or trio whole-genome sequencing (depending on sample availability) and proband targeted gene panels. Clinical utility, cost, and diagnostic yield of both testing modalities will be assessed. This study will evaluate the use of a novel, digital platform (GUÍA) to digitize the return of genomic results experience and improve participant understanding for English- and Spanish-speaking families. Surveys will collect data at three study visits: baseline (0 months), result disclosure visit (ROR1, + 3 months), and follow-up visit (ROR2, + 9 months). Outcomes will assess parental understanding of and attitudes toward receiving genomic results for their child and behavioral, psychological, and social impact of results. We will also conduct a pilot study to assess a digital tool called GenomeDiver designed to enhance communication between clinicians and genetic testing labs. We will evaluate GenomeDiver's ability to increase the diagnostic yield compared to standard practices, improve clinician's ability to perform targeted reverse phenotyping, and increase the efficiency of genetic testing lab personnel. DISCUSSION: The NYCKidSeq project will contribute to the innovations and best practices in communicating genomic test results to diverse populations. This work will inform strategies for implementing genomic medicine in health systems serving diverse populations using methods that are clinically useful, technologically savvy, culturally sensitive, and ethically sound. TRIAL REGISTRATION: ClinicalTrials.gov NCT03738098 . Registered on November 13, 2018 Trial Sponsor: Icahn School of Medicine at Mount Sinai Contact Name: Eimear Kenny, PhD (Principal Investigator) Address: Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., Box 1003, New York, NY 10029 Email: eimear.kenny@mssm.edu.


Asunto(s)
Pruebas Genéticas , Genómica , Niño , Humanos , Ciudad de Nueva York , Padres , Proyectos Piloto , Ensayos Clínicos Controlados Aleatorios como Asunto , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...