Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 21(1): 291, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110917

RESUMEN

BACKGROUND: Rhabdomeric photoreceptors of eyes in the terrestrial slug Limax are the typical invertebrate-type but unique in that three visual opsins (Gq-coupled rhodopsin, xenopsin, Opn5A) and one retinochrome, all belonging to different groups, are co-expressed. However, molecular properties including spectral sensitivity and G protein selectivity of any of them are not determined, which prevents us from understanding an advantage of multiplicity of opsin properties in a single rhabdomeric photoreceptor. To gain insight into the functional role of the co-expression of multiple opsin species in a photoreceptor, we investigated the molecular properties of the visual opsins in the present study. RESULTS: First, we found that the fourth member of visual opsins, Opn5B, is also co-expressed in the rhabdomere of the photoreceptor together with previously identified three opsins. The photoreceptors were also demonstrated to express Gq and Go alpha subunits. We then determined the spectral sensitivity of the four visual opsins using biochemical and spectroscopic methods. Gq-coupled rhodopsin and xenopsin exhibit maximum sensitivity at ~ 456 and 475 nm, respectively, and Opn5A and Opn5B exhibit maximum sensitivity at ~ 500 and 470 nm, respectively, with significant UV sensitivity. Notably, in vitro experiments revealed that Go alpha was activated by all four visual opsins, in contrast to the specific activation of Gq alpha by Gq-coupled rhodopsin, suggesting that the eye photoreceptor of Limax uses complex G protein signaling pathways. CONCLUSIONS: The eye photoreceptor in Limax expresses as many as four different visual opsin species belonging to three distinct classes. The combination of opsins with different spectral sensitivities and G protein selectivities may underlie physiological properties of the ocular photoreception, such as a shift in spectral sensitivity between dark- and light-adapted states. This may be allowed by adjustment of the relative contribution of the four opsins without neural networks, enabling a simple strategy for fine-tuning of vision.


Asunto(s)
Opsinas , Células Fotorreceptoras de Invertebrados , Animales , Opsinas/genética , Opsinas/análisis , Células Fotorreceptoras de Invertebrados/fisiología , Rodopsina/genética , Moluscos , Proteínas de Unión al GTP/análisis , Proteínas de Unión al GTP/metabolismo
2.
Elife ; 122023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37589544

RESUMEN

G-protein-coupled receptors (GPCRs) transmit signals into cells depending on the G protein type. To analyze the functions of GPCR signaling, we assessed the effectiveness of animal G-protein-coupled bistable rhodopsins that can be controlled into active and inactive states by light application using zebrafish. We expressed Gq- and Gi/o-coupled bistable rhodopsins in hindbrain reticulospinal V2a neurons, which are involved in locomotion, or in cardiomyocytes. Light stimulation of the reticulospinal V2a neurons expressing Gq-coupled spider Rh1 resulted in an increase in the intracellular Ca2+ level and evoked swimming behavior. Light stimulation of cardiomyocytes expressing the Gi/o-coupled mosquito Opn3, pufferfish TMT opsin, or lamprey parapinopsin induced cardiac arrest, and the effect was suppressed by treatment with pertussis toxin or barium, suggesting that Gi/o-dependent regulation of inward-rectifier K+ channels controls cardiac function. These data indicate that these rhodopsins are useful for optogenetic control of GPCR-mediated signaling in zebrafish neurons and cardiomyocytes.


Asunto(s)
Miocitos Cardíacos , Canales de Potasio de Rectificación Interna , Animales , Pez Cebra , Optogenética , Neuronas , Rodopsina
3.
J Biol Chem ; 299(6): 104726, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37094700

RESUMEN

The position of the counterion in animal rhodopsins plays a crucial role in maintaining visible light sensitivity and facilitating the photoisomerization of their retinal chromophore. The counterion displacement is thought to be closely related to the evolution of rhodopsins, with different positions found in invertebrates and vertebrates. Interestingly, box jellyfish rhodopsin (JelRh) acquired the counterion in transmembrane 2 independently. This is a unique feature, as in most animal rhodopsins, the counterion is found in a different location. In this study, we used Fourier Transform Infrared spectroscopy to examine the structural changes that occur in the early photointermediate state of JelRh. We aimed to determine whether the photochemistry of JelRh is similar to that of other animal rhodopsins by comparing its spectra to those of vertebrate bovine rhodopsin (BovRh) and invertebrate squid rhodopsin (SquRh). We observed that the N-D stretching band of the retinal Schiff base was similar to that of BovRh, indicating the interaction between the Schiff base and the counterion is similar in both rhodopsins, despite their different counterion positions. Furthermore, we found that the chemical structure of the retinal in JelRh is similar to that in BovRh, including the changes in the hydrogen-out-of-plane band that indicates a retinal distortion. Overall, the protein conformational changes induced by the photoisomerization of JelRh yielded spectra that resemble an intermediate between BovRh and SquRh, suggesting a unique spectral property of JelRh, and making it the only animal rhodopsin with a counterion in TM2 and an ability to activate Gs protein.


Asunto(s)
Rodopsina , Bases de Schiff , Animales , Bovinos , Fotoquímica , Rodopsina/química , Bases de Schiff/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Cubomedusas
4.
Proc Natl Acad Sci U S A ; 120(13): e2220728120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36943890

RESUMEN

Spectral tuning of visual pigments often facilitates adaptation to new environments, and it is intriguing to study the visual ecology of pelagic sharks with secondarily expanded habitats. The whale shark, which dives into the deep sea of nearly 2,000 meters besides near-surface filter feeding, was previously shown to possess the 'blue-shifted' rhodopsin (RHO), which is a signature of deep-sea adaptation. In this study, our spectroscopy of recombinant whale shark RHO mutants revealed that this blue shift is caused dominantly by an unprecedented spectral tuning site 94. In humans, the mutation at the site causes congenital stationary night blindness (CSNB) by reducing the thermal stability of RHO. Similarly, the RHO of deep-diving whale shark has reduced thermal stability, which was experimentally shown to be achieved by site 178 and 94. RHOs having the natural substitution at site 94 are also found in some Antarctic fishes, suggesting that the blue shift by the substitution at the CSNB site associated with the reduction in thermal stability might be allowed in cold-water deep-sea habitats.


Asunto(s)
Rodopsina , Tiburones , Humanos , Animales , Rodopsina/genética , Mutación , Tiburones/genética , Regiones Antárticas
5.
Biochemistry ; 62(8): 1347-1359, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37001008

RESUMEN

Animal visual rhodopsins can be classified into monostable and bistable rhodopsins, which are typically found in vertebrates and invertebrates, respectively. The former example is bovine rhodopsin (BovRh), whose structures and functions have been extensively studied. On the other hand, those of bistable rhodopsins are less known, despite their importance in optogenetics. Here, low-temperature Fourier-transform infrared (FTIR) spectroscopy was applied to jumping spider rhodopsin-1 (SpiRh1) at 77 K, and the obtained light-induced spectral changes were compared with those of squid rhodopsin (SquRh) and BovRh. Although chromophore distortion of the resting state monitored by HOOP vibrations is not distinctive between invertebrate and vertebrate rhodopsins, distortion of the all-trans chromophore after photoisomerization is unique for BovRh, and the distortion was localized at the center of the chromophore in SpiRh1 and SquRh. Highly conserved aspartate (D83 in BovRh) does not change the hydrogen-bonding environment in invertebrate rhodopsins. Thus, present FTIR analysis provides specific structural changes, leading to activation of invertebrate and vertebrate rhodopsins. On the other hand, the analysis of O-D stretching vibrations in D2O revealed unique features of protein-bound water molecules. Numbers of water bands in SpiRh1 and SquRh were less and more than those in BovRh. The X-ray crystal structure of SpiRh1 observed a bridged water molecule between the protonated Schiff base and its counterion (E194), but strongly hydrogen-bonded water molecules were never detected in SpiRh1, as well as SquRh and BovRh. Thus, absence of strongly hydrogen-bonded water molecules is substantial for animal rhodopsins, which is distinctive from microbial rhodopsins.


Asunto(s)
Rodopsina , Rodopsinas Microbianas , Animales , Bovinos , Rodopsina/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Agua/química , Hidrógeno , Bases de Schiff/química
6.
Sci Rep ; 13(1): 1628, 2023 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-36710295

RESUMEN

Opsins, light-sensitive G protein-coupled receptors, have been identified in corals but their properties are largely unknown. Here, we identified six opsin genes (acropsins 1-6) from a coral species Acropora millepora, including three novel opsins (acropsins 4-6), and successfully characterized the properties of four out of the six acropsins. Acropsins 1 and 6 exhibited light-dependent cAMP increases in cultured cells, suggesting that the acropsins could light-dependently activate Gs-type G protein like the box jellyfish opsin from the same opsin group. Spectral sensitivity curves having the maximum sensitivities at ~ 472 nm and ~ 476 nm were estimated for acropsins 1 and 6, respectively, based on the light wavelength-dependent cAMP increases in these opsins-expressing cells (heterologous action spectroscopy). Acropsin 2 belonging to the same group as acropsins 1 and 6 did not induce light-dependent cAMP or Ca2+ changes. We then successfully estimated the acropsin 2 spectral sensitivity curve having its maximum value at ~ 471 nm with its chimera mutant which possessed the third cytoplasmic loop of the Gs-coupled jellyfish opsin. Acropsin 4 categorized as another group light-dependently induced intracellular Ca2+ increases but not cAMP changes. Our results uncovered that the Acropora coral possesses multiple opsins coupling two distinct cascades, cyclic nucleotide and Ca2+signaling light-dependently.


Asunto(s)
Antozoos , Opsinas , Animales , Opsinas/metabolismo , Antozoos/genética , Antozoos/metabolismo , Opsinas de Bastones/metabolismo , Proteínas de Unión al GTP/metabolismo , Transducción de Señal , Filogenia
7.
Proc Natl Acad Sci U S A ; 119(48): e2204341119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36417444

RESUMEN

Optical control of G protein-coupled receptor (GPCR) signaling is a highly valuable approach for comprehensive understanding of GPCR-based physiologies and controlling them precisely. However, optogenetics for GPCR signaling is still developing and requires effective and versatile tools with performance evaluation from their molecular properties. Here, we systematically investigated performance of two bistable opsins that activate Gi/Go-type G protein (mosquito Opn3 (MosOpn3) and lamprey parapinopsin (LamPP)) in optical control in vivo using Caenorhabditis elegans. Transgenic worms expressing MosOpn3, which binds 13-cis retinal to form photopigments, in nociceptor neurons showed light-induced avoidance responses in the presence of all-trans retinal, a retinal isomer ubiquitously present in every tissue, like microbial rhodopsins and unlike canonical vertebrate opsins. Remarkably, transgenic worms expressing MosOpn3 were ~7,000 times more sensitive to light than transgenic worms expressing ChR2 in this light-induced behavior, demonstrating the advantage of MosOpn3 as a light switch. LamPP is a UV-sensitive bistable opsin having complete photoregenerative ability by green light. Accordingly, transgenic worms expressing LamPP in cholinergic motor neurons stopped moving upon violet light illumination and restored coordinate movement upon green light illumination, demonstrating color-dependent control of behavior using LamPP. Furthermore, we applied molecular engineering to produce MosOpn3-based tools enabling light-dependent upregulation of cAMP or Ca2+ levels and LamPP-based tool enabling clamping cAMP levels color dependently and context independently, extending their usability. These findings define the capacity of two bistable opsins with similar retinal requirement as ChR2, providing numerous strategies for optical control of various GPCR-based physiologies as well as GPCR signaling itself.


Asunto(s)
Culicidae , Opsinas , Animales , Opsinas/genética , Opsinas/metabolismo , Lampreas/metabolismo , Culicidae/metabolismo , Visión Ocular , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animales Modificados Genéticamente
8.
F1000Res ; 11: 1077, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36262334

RESUMEN

The taxon Elasmobranchii (sharks and rays) contains one of the long-established evolutionary lineages of vertebrates with a tantalizing collection of species occupying critical aquatic habitats. To overcome the current limitation in molecular resources, we launched the Squalomix Consortium in 2020 to promote a genome-wide array of molecular approaches, specifically targeting shark and ray species. Among the various bottlenecks in working with elasmobranchs are their elusiveness and low fecundity as well as the large and highly repetitive genomes. Their peculiar body fluid composition has also hindered the establishment of methods to perform routine cell culturing required for their karyotyping. In the Squalomix consortium, these obstacles are expected to be solved through a combination of in-house cytological techniques including karyotyping of cultured cells, chromatin preparation for Hi-C data acquisition, and high fidelity long-read sequencing. The resources and products obtained in this consortium, including genome and transcriptome sequences, a genome browser powered by JBrowse2 to visualize sequence alignments, and comprehensive matrices of gene expression profiles for selected species are accessible through https://github.com/Squalomix/info.


Asunto(s)
Tiburones , Animales , Tiburones/genética , Genoma , Vertebrados , Cromatina , Difusión de la Información
9.
Philos Trans R Soc Lond B Biol Sci ; 377(1862): 20210274, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36058246

RESUMEN

Insect vision starts with light absorption by visual pigments based on opsins that drive Gq-type G protein-mediated phototransduction. Since Drosophila, the most studied insect in vision research, has only Gq-coupled opsins, the Gq-mediated phototransduction has been solely focused on insect vision for decades. However, genome projects on mosquitos uncovered non-canonical insect opsin genes, members of the Opn3 or c-opsin group composed of vertebrate and invertebrate non-visual opsins. Here, we report that a homologue of Opn3, MosOpn3 (Asop12) is expressed in eyes of a mosquito Anopheles stephensi. In situ hybridization analysis revealed that MosOpn3 is expressed in dorsal and ventral ommatidia, in which only R7 photoreceptor cells express MosOpn3. We also found that Asop9, a Gq-coupled visual opsin, exhibited co-localization with MosOpn3. Spectroscopic analysis revealed that Asop9 forms a blue-sensitive opsin-based pigment. Thus, the Gi/Go-coupled opsin MosOpn3, which forms a green-sensitive pigment, is co-localized with Asop9, a Gq-coupled opsin that forms a blue-sensitive visual pigment. Since these two opsin-based pigments trigger different phototransduction cascades, the R7 photoreceptors could generate complex photoresponses to blue to green light. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.


Asunto(s)
Opsinas , Opsinas de Bastones , Animales , Insectos/metabolismo , Opsinas/química , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Pigmentos Retinianos , Opsinas de Bastones/genética , Vertebrados/metabolismo
10.
BMC Biol ; 19(1): 188, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34526036

RESUMEN

BACKGROUND: Pineal-related organs in cyclostomes, teleosts, amphibians, and reptiles exhibit color opponency, generating antagonistic neural responses to different wavelengths of light and thereby sensory information about its "color". Our previous studies suggested that in zebrafish and iguana pineal-related organs, a single photoreceptor cell expressing both UV-sensitive parapinopsin and green-sensitive parietopsin generates color opponency in a "one-cell system." However, it remains unknown to what degree these opsins and the single cell-based mechanism in the pineal color opponency are conserved throughout non-mammalian vertebrates. RESULTS: We found that in the lamprey pineal organ, the two opsins are conserved but that, in contrast to the situation in other vertebrate pineal-related organs, they are expressed in separate photoreceptor cells. Intracellular electrophysiological recordings demonstrated that the parietopsin-expressing photoreceptor cells with Go-type G protein evoke a depolarizing response to visible light. Additionally, spectroscopic analyses revealed that parietopsin with 11-cis 3-dehydroretinal has an absorption maximum at ~570 nm, which is in approximate agreement with the wavelength (~560 nm) that produces the maximum rate of neural firing in pineal ganglion cells exposed to visible light. The vesicular glutamate transporter is localized at both the parietopsin- and parapinopsin-expressing photoreceptor terminals, suggesting that both types of photoreceptor cells use glutamate as a transmitter. Retrograde tracing of the pineal ganglion cells revealed that the terminal of the parietopsin-expressing cells is located close enough to form a neural connection with the ganglion cells, which is similar to our previous observation for the parapinopsin-expressing photoreceptor cells and the ganglion cells. In sum, our observations point to a "two-cell system" in which parietopsin and parapinopsin, expressed separately in two different types of photoreceptor cells,  contribute to the generation of color opponency in the pineal ganglion cells. CONCLUSION: Our results indicate that the jawless vertebrate, lamprey, employs a system for color opponency that differes from that described previously in jawed vertebrates. From a physiological viewpoint, we propose an evolutionary insight, the emergence of pineal "one-cell system" from the ancestral "multiple (two)-cell system," showing the opposite evolutionary direction to that of the ocular color opponency.


Asunto(s)
Glándula Pineal , Animales , Lampreas/genética , Lampreas/metabolismo , Opsinas/metabolismo , Glándula Pineal/metabolismo , Ríos , Pez Cebra/metabolismo
11.
Zoological Lett ; 7(1): 1, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579376

RESUMEN

In the pineal organ of zebrafish larvae, the bistable opsin parapinopsin alone generates color opponency between UV and visible light. Our previous study suggested that dark inactivation of the parapinopsin photoproduct, which activates G-proteins, is important for the regulation of the amount of the photoproduct. In turn, the photoproduct is responsible for visible light sensitivity in color opponency. Here, we found that an opsin kinase or a G-protein-coupled receptor kinase (GRK) is involved in inactivation of the active photoproduct of parapinopsin in the pineal photoreceptor cells of zebrafish larvae. We investigated inactivation of the photoproduct in the parapinopsin cells of various knockdown larvae by measuring the light responses of the cells using calcium imaging. We found that GRK7a knockdown slowed recovery of the response of parapinopsin photoreceptor cells, whereas GRK1b knockdown or GRK7b knockdown did not have a remarkable effect, suggesting that GRK7a, a cone-type GRK, is mainly responsible for inactivation of the parapinopsin photoproduct in zebrafish larvae. We also observed a similar knockdown effect on the response of the parapinopsin photoreceptor cells of mutant larvae expressing the opsin SWS1, a UV-sensitive cone opsin, instead of parapinopsin, suggesting that the parapinopsin photoproduct was inactivated in a way similar to that described for cone opsins. We confirmed the immunohistochemical distribution of GRK7a in parapinopsin photoreceptor cells by comparing the immunoreactivity to GRK7 in GRK7a-knockdown and control larvae. These findings suggest that in pineal photoreceptor cells, the cone opsin kinase GRK7a contributes greatly to the inactivation of parapinopsin, which underlies pineal color opponency.

12.
Adv Exp Med Biol ; 1293: 141-151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33398811

RESUMEN

Animal opsin-based pigments are light-activated G-protein-coupled receptors (GPCRs), which drive signal transduction cascades via G-proteins. Thousands of animal opsins have been identified, and molecular phylogenetic and biochemical analyses have revealed the unexpected diversity in selectivity of G-protein activation and photochemical property. Here we discuss the optogenetic potentials of diverse animal opsins, particularly recently well-characterized three non-canonical opsins, parapinopsin, peropsin, and LWS bistable opsin. Unlike canonical opsins such as vertebrate visual opsins that have been conventionally used for optogenetic applications, these opsins are bistable; opsin-based pigments do not release the chromophore retinal after light absorption, and the stable photoproducts revert to their original dark states upon subsequent light absorption. Parapinopsins have a "complete photoregeneration ability," which allows a clear color-dependent regulation of signal transductions. On the other hand, peropsins serve as a "dark-active and light-inactivated" GPCR to regulate signal transductions in the opposite way compared with usual opsins. In addition, an LWS bistable opsin from a butterfly was revealed to be the longest wavelength-sensitive animal opsin with its absorption maximum at ~570 nm. The property-dependent optical regulations of signal transductions were demonstrated in mammalian cultured cells, showing potentials of new optogenetic tools.


Asunto(s)
Opsinas , Optogenética , Animales , Evolución Molecular , Opsinas/genética , Opsinas/efectos de la radiación , Vertebrados , Visión Ocular/efectos de la radiación
13.
J Evol Biol ; 34(6): 968-976, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33135271

RESUMEN

Vision of sharks embraces various biological and ecological themes ranging from predation and adaptation to deep-sea life. However, behavioural and genetic studies have been limited by their elusive lifestyles, repeatedly reported declines of wild populations, and their unique life-history traits including low fecundity and enhanced longevity. Sharks have also not been actively studied on the cellular and molecular levels, because of additional difficulties in cell culture, tissue collection and genome sequencing. A recent study circumvented some of these obstacles by means of genome informatics thereby portrayed the variation of visual opsin gene repertoires among elasmobranchs (sharks and rays) and spectral shifts of the rhodopsin pigment. Comprehensive surveys in whole-genome sequences are also revealing the repertoires of nonvisual opsins with unknown functions. This review is aimed to summarize existing studies on shark opsins with an emphasis on genomic investigation of gene repertoires and to provide insights into the better understanding of underwater ecology of marine megafauna with in vitro experimentation.


Asunto(s)
Opsinas/genética , Tiburones/genética , Visión Ocular/genética , Adaptación Biológica , Animales , Ecosistema , Genoma
14.
Vis Neurosci ; 37: E009, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33028447
15.
Sci Rep ; 10(1): 10195, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576969

RESUMEN

The velvet belly lanternshark, Etmopterus spinax, uses counterillumination to disappear in the surrounding blue light of its marine environment. This shark displays hormonally controlled bioluminescence in which melatonin (MT) and prolactin (PRL) trigger light emission, while α-melanocyte-stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH) play an inhibitory role. The extraocular encephalopsin (Es-Opn3) was also hypothesized to act as a luminescence regulator. The majority of these compounds (MT, α-MSH, ACTH, opsin) are members of the rapid physiological colour change that regulates the pigment motion within chromatophores in metazoans. Interestingly, the lanternshark photophore comprises a specific iris-like structure (ILS), partially composed of melanophore-like cells, serving as a photophore shutter. Here, we investigated the role of (i) Es-Opn3 and (ii) actors involved in both MT and α-MSH/ACTH pathways on the shark bioluminescence and ILS cell pigment motions. Our results reveal the implication of Es-Opn3, MT, inositol triphosphate (IP3), intracellular calcium, calcium-dependent calmodulin and dynein in the ILS cell pigment aggregation. Conversely, our results highlighted the implication of the α-MSH/ACTH pathway, involving kinesin, in the dispersion of the ILS cell pigment. The lanternshark luminescence then appears to be controlled by the balanced bidirectional motion of ILS cell pigments within the photophore. This suggests a functional link between photoreception and photoemission in the photogenic tissue of lanternsharks and gives precious insights into the bioluminescence control of these organisms.


Asunto(s)
Movimiento/fisiología , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/fisiología , Pigmentación/fisiología , Tiburones/metabolismo , Tiburones/fisiología , Hormona Adrenocorticotrópica/metabolismo , Animales , Luz , Luminiscencia , Melatonina/metabolismo , Opsinas/metabolismo , Prolactina/metabolismo , Transducción de Señal/fisiología , Piel/metabolismo , Piel/fisiopatología , alfa-MSH/metabolismo
16.
Sci Rep ; 10(1): 9669, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541666

RESUMEN

In lower vertebrates, brain photoreceptor cells express vertebrate-specific non-visual opsins. We previously revealed that a pineal-related organ-specific opsin, parapinopsin, is UV-sensitive and allows pineal wavelength discrimination in lampreys and teleost. The Australian pouched lamprey was recently reported as having two parapinopsin-related genes. We demonstrate that a parapinopsin-like opsin from the Japanese river lamprey exhibits different molecular properties and distribution than parapinopsin. This opsin activates Gi-type G protein in a mammalian cell culture assay in a light-dependent manner. Heterologous action spectroscopy revealed that the opsin forms a violet to blue-sensitive pigment. Interestingly, the opsin is co-localised with green-sensitive P-opsin in the cells of the M5 nucleus of Schober (M5NS) in the mesencephalon of the river and brook lamprey. Some opsins-containing cells of the river lamprey have cilia and others an axon projecting to the retina. The opsins of the brook lamprey are co-localised in the cilia of centrifugal neurons projecting to the retina, suggesting that cells expressing the parapinopsin-like opsin and P-opsin are sensitive to violet to green light. Moreover, we found neural connections between M5NS cells expressing the opsins and the retina. These findings suggest that the retinal activity might be modulated by brain photoreception.


Asunto(s)
Lampreas/metabolismo , Mesencéfalo/metabolismo , Opsinas/genética , Opsinas/metabolismo , Retina/metabolismo , Animales , Clonación Molecular , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Regulación de la Expresión Génica , Lampreas/genética , Filogenia , Distribución Tisular
17.
J Comp Neurol ; 527(18): 3073-3086, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31226228

RESUMEN

Visual opsins coupled with Gq -type G protein have been considered to be responsible for the vision in mollusks. Recent transcriptomic studies, however, revealed the presence of opsin mRNA belonging to different groups of opsin subfamilies in the eyes of mollusks. In the present study, we found that at least three different opsins, Gq -coupled rhodopsin, opsin5A, and xenopsin, are co-expressed in the rhabdomeric photoreceptor cell in the eyes of the terrestrial slug Limax valentianus. These opsins were all localized to the microvilli of the rhabdomere. Co-expression of rhodopsin and opsin5A mRNA was also demonstrated by dual fluorescence in situ hybridization. Co-expression of multiple opsins in the rhabdomeric photoreceptors cells may explain the previously reported shift in the action spectra of the electroretinogram of eyes of Limax flavus between the light- and dark-adapted states, which was also reproduced in the present study in L. valentianus.


Asunto(s)
Opsinas/biosíntesis , Opsinas/genética , Células Fotorreceptoras de Invertebrados/química , Células Fotorreceptoras de Invertebrados/metabolismo , Animales , Gastrópodos , Expresión Génica , Células HEK293 , Humanos , Células Fotorreceptoras/química , Células Fotorreceptoras/metabolismo , Filogenia
18.
Commun Biol ; 2: 180, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31098413

RESUMEN

Animals sense light using photosensitive proteins-rhodopsins-containing a chromophore-retinal-that intrinsically absorbs in the ultraviolet. Visible light-sensitivity depends primarily on protonation of the retinylidene Schiff base (SB), which requires a negatively-charged amino acid residue-counterion-for stabilization. Little is known about how the most common counterion among varied rhodopsins, Glu181, functions. Here, we demonstrate that in a spider visual rhodopsin, orthologue of mammal melanopsins relevant to circadian rhythms, the Glu181 counterion functions likely by forming a hydrogen-bonding network, where Ser186 is a key mediator of the Glu181-SB interaction. We also suggest that upon light activation, the Glu181-SB interaction rearranges while Ser186 changes its contribution. This is in contrast to how the counterion of vertebrate visual rhodopsins, Glu113, functions, which forms a salt bridge with the SB. Our results shed light on the molecular mechanisms of visible light-sensitivity relevant to invertebrate vision and vertebrate non-visual photoreception.


Asunto(s)
Proteínas de Artrópodos/química , Proteínas de Artrópodos/efectos de la radiación , Rodopsina/química , Rodopsina/efectos de la radiación , Sustitución de Aminoácidos , Animales , Proteínas de Artrópodos/genética , Enlace de Hidrógeno , Luz , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Procesos Fotoquímicos , Estabilidad Proteica , Rodopsina/genética , Bases de Schiff/química , Bases de Schiff/efectos de la radiación , Arañas/química , Arañas/genética
19.
Biophys J ; 116(7): 1248-1258, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30902364

RESUMEN

Bistable opsins are photopigments expressed in both invertebrates and vertebrates. These light-sensitive G-protein-coupled receptors undergo a reversible reaction upon illumination. A first photon initiates the cis to trans isomerization of the retinal chromophore-attached to the protein through a protonated Schiff base-and a series of transition states that eventually results in the formation of the thermally stable and active Meta state. Excitation by a second photon reverts this process to recover the original ground state. On the other hand, monostable opsins (e.g., bovine rhodopsin) lose their chromophore during the decay of the Meta II state (i.e., they bleach). Spectroscopic studies on the molecular details of the two-photon cycle in bistable opsins are limited. Here, we describe the successful expression and purification of recombinant rhodopsin-1 from the jumping spider Hasarius adansoni (JSR1). In its natural configuration, spectroscopic characterization of JSR1 is hampered by the similar absorption spectra in the visible spectrum of the inactive and active states. We solved this issue by separating their absorption spectra by replacing the endogenous 11-cis retinal chromophore with the blue-shifted 9-cis JSiR1. With this system, we used time-resolved ultraviolet-visible spectroscopy after pulsed laser excitation to obtain kinetic details of the rise and decay of the photocycle intermediates. We also used resonance Raman spectroscopy to elucidate structural changes of the retinal chromophore upon illumination. Our data clearly indicate that the protonated Schiff base is stable throughout the entire photoreaction. We additionally show that the accompanying conformational changes in the protein are different from those of monostable rhodopsin, as recorded by light-induced FTIR difference spectroscopy. Thus, we envisage JSR1 as becoming a model system for future studies on the reaction mechanisms of bistable opsins, e.g., by time-resolved x-ray crystallography.


Asunto(s)
Proteínas de Insectos/química , Fotones , Rodopsina/química , Absorción de Radiación , Animales , Proteínas de Insectos/efectos de la radiación , Dominios Proteicos , Rodopsina/efectos de la radiación , Bases de Schiff/química , Arañas , Rayos Ultravioleta
20.
Zoological Lett ; 5: 35, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31890273

RESUMEN

Absorption spectra of opsin-based pigments are tuned from the UV to the red regions by interactions of the chromophore with surrounding amino acid residues. Both vertebrates and invertebrates possess long-wavelength-sensitive (LWS) opsins, which underlie color vision involving "red" sensing. The LWS opsins have independently evolved in each lineage, which suggests the existence of diverse mechanisms in spectral tuning. In vertebrate LWS opsins, the mechanisms underlying spectral tuning have been well characterized by spectroscopic analyses with recombinant pigments of wild type (WT) and mutant opsins. However in invertebrate LWS opsins including insect ones, the mechanisms are largely unknown due to the difficulty in obtaining recombinant pigments. Here we have overcome the problem by analyzing heterologous action spectra based on light-dependent changes in the second messenger in opsin-expressing cultured cells. We found that WTs of two LWS opsins of the butterfly, Papilio xuthus, PxRh3 and PxRh1 have the wavelengths of the absorption maxima at around 570 nm and 540 nm, respectively. Analysis of a series of chimeric mutants showed that helix III is crucial to generating a difference of about 15 nm in the wavelength of absorption maxima of these LWS opsins. Further site-directed mutations in helix III revealed that amino acid residues at position 116 and 120 (bovine rhodopsin numbering system) are involved in the spectral tuning of PxRh1 and PxRh3, suggesting a different spectral tuning mechanism from that of primate LWS opsins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...