Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(9): e0053523, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37668369

RESUMEN

The genomes of mammals contain fingerprints of past infections by ancient retroviruses that invaded the germline of their ancestors. Most of these endogenous retroviruses (ERVs) contain only remnants of the original retrovirus; however, on rare occasions, ERV genes can be co-opted for a beneficial host function. While most studies of co-opted ERVs have focused on envelope genes, including the syncytins that function in placentation, there are examples of co-opted gag genes including one we recently discovered in simian primates. Here, we searched for other intact gag genes in non-primate mammalian lineages. We began by examining the genomes of extant camel species, which represent a basal lineage in the order Artiodactyla. This identified a gagpol gene with a large open reading frame (ORF) (>3,500 bp) in the same orthologous location in Artiodactyla species but that is absent in other mammals. Thus, this ERV was fixed in the common ancestor of all Artiodactyla at least 64 million years ago. The amino acid sequence of this gene, termed ARTgagpol, contains recognizable matrix, capsid, nucleocapsid, and reverse transcriptase domains in ruminants, with an RNase H domain in camels and pigs. Phylogenetic analysis and structural prediction of its reverse transcriptase and RNase H domains groups ARTgagpol with gammaretroviruses. Transcriptomic analysis shows ARTgagpol expression in multiple tissues suggestive of a co-opted host function. These findings identify the oldest and largest ERV-derived gagpol gene with an intact ORF in mammals, an intriguing milestone in the co-evolution of mammals and retroviruses. IMPORTANCE Retroviruses are unique among viruses that infect animals as they integrate their reverse-transcribed double-stranded DNA into host chromosomes. When this happens in a germline cell, such as sperm, egg, or their precursors, the integrated retroviral copies can be passed on to the next generation as endogenous retroviruses (ERVs). On rare occasions, the genes of these ERVs can be domesticated by the host. In this study we used computational similarity searches to identify an ancient ERV with an intact viral gagpol gene in the genomes of camels that is also found in the same genomic location in other even-toed ungulates suggesting that it is at least 64 million years old. Broad tissue expression and predicted preservation of the reverse transcriptase fold of this protein suggest that it may be domesticated for a host function. This is the oldest known intact gagpol gene of an ancient retrovirus in mammals.


Asunto(s)
Artiodáctilos , Retrovirus Endógenos , Animales , Camelus , Retrovirus Endógenos/genética , Evolución Molecular , Filogenia , Ribonucleasa H/genética , ADN Polimerasa Dirigida por ARN/genética , Porcinos , Artiodáctilos/genética
2.
PLoS Genet ; 18(10): e1010458, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36240227

RESUMEN

Endogenous retroviruses (ERVs) found in vertebrate genomes are remnants of retroviral invasions of their ancestral species. ERVs thus represent molecular fossil records of ancient retroviruses and provide a unique opportunity to study viral-host interactions, including cross-species transmissions, in deep time. While most ERVs contain the mutated remains of the original retrovirus, on rare occasions evolutionary selection pressures lead to the co-option/exaptation of ERV genes for a host function. Here, we report the identification of two ancient related non-orthologous ERV env genes, ARTenvV and CARenvV, that are preserved with large open reading frames (ORFs) in the mammalian orders Artiodactyla and Carnivora, respectively, but are not found in other mammals. These Env proteins lack a transmembrane motif, but phylogenetic analyses show strong sequence preservation and positive selection of the env surface ORF in their respective orders, and transcriptomic analyses show a broad tissue expression pattern for both ARTenvV and CARenvV, suggesting that these genes may be exapted for a host function. Multiple lines of evidence indicate that ARTenvV and CARenvV were derived from an ancient ancestral exogenous gamma-like retrovirus that was independently endogenized in two mammalian orders more than 60 million years ago, which roughly coincides with the K-Pg mass extinction event and subsequent mammalian diversification. Thus, these findings identify the oldest known retroviral cross-ordinal transmission of a gamma-like retrovirus with no known extant infectious counterpart in mammals, and the first discovery of the convergent co-option of an ERV gene derived from the same ancestral retrovirus in two different mammalian orders.


Asunto(s)
Retrovirus Endógenos , Animales , Retrovirus Endógenos/genética , Genes env , Filogenia , Mamíferos/genética , Productos del Gen env/genética , Evolución Molecular
3.
Neurotherapeutics ; 19(4): 1085-1101, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35415778

RESUMEN

The study of the role of retroviruses in amyotrophic lateral sclerosis (ALS) dates back to the 1960s shortly after transposable elements themselves were first discovered. It was quickly realized that in wild mice both horizontal and vertical transmissions of retroviral elements were key to the development of an ALS-like syndrome leading to the postulate that endogenous retroviruses (ERVs) contribute significantly to the pathogenicity of this disease. Subsequent studies identified retroviral reverse transcriptase activity in brains of individuals with ALS from Guam. However, except for a single study from the former Soviet Union, ALS could not be transmitted to rhesus macaques. The discovery of an ALS-like syndrome in human immunodeficiency virus (HIV) and human T cell leukemia virus infected individuals led to renewed interest in the field and reverse transcriptase activity was found in the blood and cerebrospinal fluid of individuals with sporadic ALS. However, exogenous retroviruses could not be found in individuals with ALS which further reinforced the possibility of involvement of a human ERV (HERV). The first demonstration of the involvement of a HERV was the discovery of the activation of human endogenous retrovirus-K subtype HML-2 in the brains of individuals with ALS. The envelope protein of HML-2 is neurotoxic and transgenic animals expressing the envelope protein develop an ALS-like syndrome. Activation of HML-2 occurs in the context of generalized transposable element activation and is not specific for ALS. Individuals with HIV-associated ALS show a remarkable response to antiretroviral therapy; however, antiretroviral trials in ALS down-regulate HML-2 without ameliorating the disease. This highlights the need for specific drugs to be developed against HML-2 as a novel therapeutic target for ALS. Other approaches might include antisense oligonucleotides, shRNA targeted against the envelope gene or antibodies that can target the extracellular envelope protein. Future clinical trials in ALS should consider combination therapies to control these ERVs.


Asunto(s)
Esclerosis Amiotrófica Lateral , Retrovirus Endógenos , Infecciones por VIH , Humanos , Animales , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Elementos Transponibles de ADN , Macaca mulatta/genética , Macaca mulatta/metabolismo , ARN Interferente Pequeño , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Oligonucleótidos Antisentido , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo
4.
Viruses ; 13(9)2021 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-34578445

RESUMEN

The classical laboratory mouse strains are genetic mosaics of three Mus musculus subspecies that occupy distinct regions of Eurasia. These strains and subspecies carry infectious and endogenous mouse leukemia viruses (MLVs) that can be pathogenic and mutagenic. MLVs evolved in concert with restrictive host factors with some under positive selection, including the XPR1 receptor for xenotropic/polytropic MLVs (X/P-MLVs) and the post-entry restriction factor Fv1. Since positive selection marks host-pathogen genetic conflicts, we examined MLVs for counter-adaptations at sites that interact with XPR1, Fv1, and the CAT1 receptor for ecotropic MLVs (E-MLVs). Results describe different co-adaptive evolutionary paths within the ranges occupied by these virus-infected subspecies. The interface of CAT1, and the otherwise variable E-MLV envelopes, is highly conserved; antiviral protection is afforded by the Fv4 restriction factor. XPR1 and X/P-MLVs variants show coordinate geographic distributions, with receptor critical sites in envelope, under positive selection but with little variation in envelope and XPR1 in mice carrying P-ERVs. The major Fv1 target in the viral capsid is under positive selection, and the distribution of Fv1 alleles is subspecies-correlated. These data document adaptive, spatial and temporal, co-evolutionary trajectories at the critical interfaces of MLVs and the host factors that restrict their replication.


Asunto(s)
Canales de Calcio/genética , Retrovirus Endógenos/genética , Evolución Molecular , Virus de la Leucemia Murina/genética , Proteínas/genética , Canales Catiónicos TRPV/genética , Proteínas del Envoltorio Viral/metabolismo , Adaptación Fisiológica , Animales , Canales de Calcio/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Retrovirus Endógenos/fisiología , Interacciones Huésped-Patógeno , Virus de la Leucemia Murina/fisiología , Ratones , Proteínas/metabolismo , Selección Genética , Canales Catiónicos TRPV/metabolismo , Receptor de Retrovirus Xenotrópico y Politrópico/genética , Receptor de Retrovirus Xenotrópico y Politrópico/metabolismo
5.
Mol Biol Evol ; 38(12): 5453-5471, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34410386

RESUMEN

Vertebrate genomes contain endogenous retroviruses (ERVs) that represent remnants of past germline infections by ancient retroviruses. Despite comprising 8% of the human genome, the human ERVs (HERVs) do not encode a replication competent retrovirus. However, some HERV genes have been co-opted to serve host functions, most notably the viral envelope-derived syncytins involved in placentation. Here, we identify the oldest HERV intact gag gene with an open reading frame, gagV1. Its provirus contains an intact env, envV1, and the first open reading frame found in an HERV gag leader, pre-gagV1, which encodes a novel protein. This HERV is linked to a related gag gene, gagV3, and these three genes all show patterns of evolutionary conservation in primates. gagV1 and pre-gagV1 orthologs are present in all simian primate lineages indicating that this HERV entered the germline of the common simian primate ancestor at least 43 Ma, whereas gagV3 is found in Old and New World monkeys. gagV1 and gagV3 have undergone recurrent gene conversion events and positive selection. Expression of gagV1, gagV3, and pre-gagV1 is restricted to the placenta in humans and macaques suggesting co-option for placenta-specific host functions. Transcriptomic analysis of human tumors also found upregulated levels of gagV1 transcripts in diffuse large B-cell lymphomas. These findings suggest that these HERV-V genes may be useful markers for the most common type of non-Hodgkin's lymphoma and that they may have contributed to the successive domestications of env and gag genes in eutherians involved in the ongoing ERV-driven evolution of the placenta.


Asunto(s)
Retrovirus Endógenos , Linfoma de Células B Grandes Difuso , Animales , Retrovirus Endógenos/genética , Femenino , Genes gag , Humanos , Linfoma de Células B Grandes Difuso/genética , Placenta , Embarazo , Primates/genética
6.
Retrovirology ; 18(1): 20, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34261506

RESUMEN

BACKGROUND: Retroviruses exist as exogenous infectious agents and as endogenous retroviruses (ERVs) integrated into host chromosomes. Such endogenous retroviruses (ERVs) are grouped into three classes roughly corresponding to the seven genera of infectious retroviruses: class I (gamma-, epsilonretroviruses), class II (alpha-, beta-, delta-, lentiretroviruses) and class III (spumaretroviruses). Some ERVs have counterparts among the known infectious retroviruses, while others represent paleovirological relics of extinct or undiscovered retroviruses. RESULTS: Here we identify an intact ERV in the Anuran amphibian, Xenopus tropicalis. XtERV-S has open reading frames (ORFs) for gag, pol (polymerase) and env (envelope) genes, with a small additional ORF in pol and a serine tRNA primer binding site. It has unusual features and domain relationships to known retroviruses. Analyses based on phylogeny and functional motifs establish that XtERV-S gag and pol genes are related to the ancient env-less class III ERV-L family but the surface subunit of env is unrelated to known retroviruses while its transmembrane subunit is class I-like. LTR constructs show transcriptional activity, and XtERV-S transcripts are detected in embryos after the maternal to zygotic mid-blastula transition and before the late tailbud stage. Tagged Gag protein shows typical subcellular localization. The presence of ORFs in all three protein-coding regions along with identical 5' and 3' LTRs (long terminal repeats) indicate this is a very recent germline acquisition. There are older, full-length, nonorthologous, defective copies in Xenopus laevis and the distantly related African bullfrog, Pyxicephalus adspersus. Additional older, internally deleted copies in X. tropicalis carry a 300 bp LTR substitution. CONCLUSIONS: XtERV-S represents a genera-spanning member of the largely env-less class III ERV that has ancient and modern copies in Anurans. This provirus has an env ORF with a surface subunit unrelated to known retroviruses and a transmembrane subunit related to class I gammaretroviruses in sequence and organization, and is expressed in early embryogenesis. Additional XtERV-S-related but defective copies are present in X. tropicalis and other African frog taxa. XtERV-S is an unusual class III ERV variant, and it may represent an important transitional retroviral form that has been spreading in African frogs for tens of millions of years.


Asunto(s)
Retrovirus Endógenos/genética , Regulación del Desarrollo de la Expresión Génica , Genoma Viral , Sistemas de Lectura Abierta/genética , Secuencias Repetidas Terminales/genética , Xenopus/genética , Xenopus/virología , Animales , Retrovirus Endógenos/clasificación , Evolución Molecular , Productos del Gen gag/genética , Productos del Gen pol/genética , Provirus/genética , Infecciones por Retroviridae/virología
7.
Microorganisms ; 8(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322320

RESUMEN

The evolutionary conflict between retroviruses and their vertebrate hosts over millions of years has led to the emergence of cellular innate immune proteins termed restriction factors as well as their viral antagonists. Evidence accumulated in the last two decades has substantially increased our understanding of the elaborate mechanisms utilized by these restriction factors to inhibit retroviral replication, mechanisms that either directly block viral proteins or interfere with the cellular pathways hijacked by the viruses. Analyses of these complex interactions describe patterns of accelerated evolution for these restriction factors as well as the acquisition and evolution of their virus-encoded antagonists. Evidence is also mounting that many restriction factors identified for their inhibition of specific retroviruses have broader antiviral activity against additional retroviruses as well as against other viruses, and that exposure to these multiple virus challenges has shaped their adaptive evolution. In this review, we provide an overview of the restriction factors that interfere with different steps of the retroviral life cycle, describing their mechanisms of action, adaptive evolution, viral targets and the viral antagonists that evolved to counter these factors.

8.
PLoS Pathog ; 15(12): e1008154, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31815961

RESUMEN

Murine leukemia virus (MLV) integrase (IN) lacking the C-terminal tail peptide (TP) loses its interaction with the host bromodomain and extraterminal (BET) proteins and displays decreased integration at promoter/enhancers and transcriptional start sites/CpG islands. MLV lacking the IN TP via an altered open reading frame was used to infect tumorigenesis mouse model (MYC/Runx2) animals to observe integration patterns and phenotypic effects, but viral passage resulted in the restoration of the IN TP through small deletions. Mice subsequently infected with an MLV IN lacking the TP coding sequence (TP-) showed an improved median survival by 15 days compared to wild type (WT) MLV infection. Recombination with polytropic endogenous retrovirus (ERV), Pmv20, was identified in seven mice displaying both fast and slow tumorigenesis, highlighting the strong selection within the mouse to maintain the full-length IN protein. Mapping the genomic locations of MLV in tumors from an infected mouse with no observed recombination with ERVs, TP-16, showed fewer integrations at TSS and CpG islands, compared to integrations observed in WT tumors. However, this mouse succumbed to the tumor in relatively rapid fashion (34 days). Analysis of the top copy number integrants in the TP-16 tumor revealed their proximity to known MLV common insertion site genes while maintaining the MLV IN TP- genotype. Furthermore, integration mapping in K562 cells revealed an insertion preference of MLV IN TP- within chromatin profile states associated with weakly transcribed heterochromatin with fewer integrations at histone marks associated with BET proteins (H3K4me1/2/3, and H3K27Ac). While MLV IN TP- showed a decreased overall rate of tumorigenesis compared to WT virus in the MYC/Runx2 model, MLV integration still occurred at regions associated with oncogenic driver genes independently from the influence of BET proteins, either stochastically or through trans-complementation by functional endogenous Gag-Pol protein.


Asunto(s)
Carcinogénesis , Vectores Genéticos/toxicidad , Leucemia Experimental , Infecciones por Retroviridae , Infecciones Tumorales por Virus , Animales , Cromatina , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Modelos Animales de Enfermedad , Genes myc , Humanos , Integrasas/metabolismo , Células K562 , Virus de la Leucemia Murina/genética , Ratones , Ratones Transgénicos , Integración Viral
9.
Sci Rep ; 9(1): 11263, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375773

RESUMEN

Evolution of cellular innate immune genes in response to viral threats represents a rich area of study for understanding complex events that shape mammalian genomes. One of these genes, TRIM5, is a retroviral restriction factor that mediates a post-entry block to infection. Previous studies on the genomic cluster that contains TRIM5 identified different patterns of gene amplification and the independent birth of CypA gene fusions in various primate species. However, the evolution of Trim5 in the largest order of mammals, Rodentia, remains poorly characterized. Here, we present an expansive phylogenetic and genomic analysis of the Trim5 cluster in rodents. Our findings reveal substantial evolutionary changes including gene amplifications, rearrangements, loss and fusion. We describe the first independent evolution of TrimCyp fusion genes in rodents. We show that the TrimCyp gene found in some Peromyscus species was acquired about 2 million years ago. When ectopically expressed, the P. maniculatus TRIMCyp shows anti-retroviral activity that is reversed by cyclosporine, but it does not activate Nf-κB or AP-1 promoters, unlike the primate TRIMCyps. These results describe a complex pattern of differential gene amplification in the Trim5 cluster of rodents and identify the first functional TrimCyp fusion gene outside of primates and tree shrews.


Asunto(s)
Ciclofilina A/genética , Evolución Molecular , Fusión Génica/inmunología , Familia de Multigenes , Peromyscus/genética , Proteínas de Motivos Tripartitos/genética , Animales , Línea Celular , Ciclofilina A/inmunología , Amplificación de Genes/inmunología , Genómica , VIH-1/inmunología , Humanos , Inmunidad Innata/genética , Peromyscus/inmunología , Filogenia , Alineación de Secuencia , Proteínas de Motivos Tripartitos/inmunología
10.
Virology ; 535: 154-161, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31302509

RESUMEN

Most viruses infect only a few hosts, but the xenotropic and polytropic mouse leukemia viruses (X/P-MLVs) are broadly infectious in mammalian species. X/P-MLVs use the XPR1 receptor for cell entry, and tropism differences are due to polymorphisms in XPR1 and the viral envelope. To characterize these receptor variants and identify blocks to cross-species transmission, we examined the XPR1 receptors in six mammalian species that restrict different subsets of X/P-MLVs. These restrictive receptors have replacement mutations in regions implicated in receptor function, and some entry restrictions can be relieved by glycosylation inhibitors. Mutation of the cow and hamster XPR1 genes identified a shared, previously unrecognized receptor-critical site. This G/Q503N replacement dramatically improves receptor function. While this substitution introduces an N-linked glycosylation site, XPR1 receptors are not glycosylated indicating that this replacement alters the virus-receptor interface independently of glycosylation. Our data also suggest that an unidentified glycosylated cofactor may influence X/P-MLV entry.


Asunto(s)
Gammaretrovirus/crecimiento & desarrollo , Mamíferos , Polimorfismo Genético , Receptores Acoplados a Proteínas G/genética , Receptores Virales/genética , Tropismo Viral , Sustitución de Aminoácidos , Animales , Glicosilación , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virales/metabolismo , Receptor de Retrovirus Xenotrópico y Politrópico
11.
PLoS One ; 14(7): e0219576, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31291374

RESUMEN

Inbred laboratory mouse strains carry endogenous retroviruses (ERVs) classed as ecotropic, xenotropic or polytropic mouse leukemia viruses (E-, X- or P-MLVs). Some of these MLV ERVs produce infectious virus and/or contribute to the generation of intersubgroup recombinants. Analyses of selected mouse strains have linked the appearance of MLVs and virus-induced disease to the strain complement of MLV E-ERVs and to host genes that restrict MLVs, particularly Fv1. Here we screened inbred strain DNAs and genome assemblies to describe the distribution patterns of 45 MLV ERVs and Fv1 alleles in 58 classical inbred strains grouped in two ways: by common ancestry to describe ERV inheritance patterns, and by incidence of MLV-associated lymphomagenesis. Each strain carries a unique set of ERVs, and individual ERVs are present in 5-96% of the strains, often showing lineage-specific distributions. Two ERVs are alternatively present as full-length proviruses or solo long terminal repeats. High disease incidence strains carry the permissive Fv1n allele, tested strains have highly expressed E-ERVs and most have the Bxv1 X-ERV; these three features are not present together in any low-moderate disease strain. The P-ERVs previously implicated in P-MLV generation are not preferentially found in high leukemia strains, but the three Fv1 alleles that restrict inbred strain E-MLVs are found only in low-moderate leukemia strains. This dataset helps define the genetic basis of strain differences in spontaneous lymphomagenesis, describes the distribution of MLV ERVs in strains with shared ancestry, and should help annotate sequenced strain genomes for these insertionally polymorphic and functionally important proviruses.


Asunto(s)
Retrovirus Endógenos/aislamiento & purificación , Virus de la Leucemia Murina/aislamiento & purificación , Linfoma/virología , Ratones Endogámicos/virología , Proteínas/genética , Alelos , Animales , Carcinogénesis/genética , Conjuntos de Datos como Asunto , Retrovirus Endógenos/genética , Virus de la Leucemia Murina/genética , Linfoma/genética , Linfoma/veterinaria , Ratones , Ratones Endogámicos/genética
12.
Viruses ; 10(8)2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30096897

RESUMEN

Naturally-occurring lymphomagenesis is induced by mouse leukemia viruses (MLVs) carried as endogenous retroviruses (ERVs). Replicating the ecotropic MLVs recombines with polytropic (P-ERVs) and xenotropic ERVs (X-ERVs) to generate pathogenic viruses with an altered host range. While most recovered nonecotropic recombinants have a polytropic host range, the X-MLVs are also present in the pre-leukemic tissues. We analyzed two such isolates from the AKR mice to identify their ERV progenitors and to look for evidence of recombination. AKR40 resembles the active X-ERV Bxv1, while AKR6 has a Bxv1-like backbone with substitutions that alter the long terminal repeat (LTR) enhancer and the envelope (env). AKR6 has a modified xenotropic host range, and its Env residue changes all lie outside of the domain that governs the receptor choice. The AKR6 segment spanning the two substitutions, but not the entire AKR6 env-LTR, exists as an ERV, termed Xmv67, in AKR, but not in the C57BL/6 mice. This suggests that AKR6 is the product of one, not two, recombination events. Xmv67 originated in the Asian mice. These data indicate that the recombinant X-MLVs that can be generated during lymphomagenesis, describe a novel X-ERV subtype found in the AKR genome, but not in the C57BL/6 reference genome, and identify residues in the envelope C-terminus that may influence the host range.


Asunto(s)
Retrovirus Endógenos/genética , Evolución Molecular , Gammaretrovirus/genética , Virus de la Leucemia Murina/genética , Linfoma/virología , Recombinación Genética , Animales , Gammaretrovirus/aislamiento & purificación , Genoma Viral , Especificidad del Huésped , Virus de la Leucemia Murina/aislamiento & purificación , Ratones , Ratones Endogámicos AKR , Ratones Endogámicos C57BL , Receptores Virales/genética , Secuencias Repetidas Terminales
13.
J Virol ; 92(18)2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29976659

RESUMEN

The laboratory mouse Fv1 gene encodes a retroviral restriction factor that mediates resistance to murine leukemia viruses (MLVs). Sequence similarity between Fv1 and the gag protein of the murine endogenous retrovirus L (MuERV-L) family of ERVs suggests that Fv1 was coopted from an ancient provirus. Previous evolutionary studies found Fv1 orthologs only in the genus Mus Here, we describe identification of orthologous Fv1 sequences in several species belonging to multiple families of rodents outside the genus Mus We show that these Fv1 orthologs are in the same region of conserved synteny, between the genes Miip and Mfn2, suggesting a minimum insertion time of 45 million years for the ancient progenitor of Fv1 Our analysis also revealed that Fv1 was not detectable or heavily mutated in some lineages in the superfamily Muroidea, while, in concert with previous findings in the genus Mus, we found strong evidence of positive selection of Fv1 in the African clade in the subfamily Muridae Residues identified as evolving under positive selection include those that have been previously found to be important for restriction of multiple retroviral lineages. Taken together, these findings suggest that the evolutionary origin of Fv1 substantially predates Mus evolution, that the rodent Fv1 has been shaped by lineage-specific differential selection pressures, and that Fv1 has long been evolving under positive selection in the rodent family Muridae, supporting a defensive role that significantly antedates exposure to MLVs.IMPORTANCE Retroviruses have adapted to living in concert with their hosts throughout vertebrate evolution. Over the years, the study of these relationships revealed the presence of host proteins called restriction factors that inhibit retroviral replication in host cells. The first of these restriction factors to be identified, encoded by the Fv1 gene found in mice, was thought to have originated in the genus Mus In this study, we utilized genome database searches and DNA sequencing to identify Fv1 copies in multiple rodent lineages. Our findings suggest a minimum time of insertion into the genome of rodents of 45 million years for the ancestral progenitor of Fv1 While Fv1 is not detectable in some lineages, we also identified full-length orthologs showing signatures of a molecular "arms race" in a family of rodent species indigenous to Africa. This finding suggests that Fv1 in these species has been coevolving with unidentified retroviruses for millions of years.


Asunto(s)
Proteínas/genética , Roedores/genética , Animales , Evolución Molecular , Ratones , Selección Genética
14.
J Virol ; 91(21)2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28794032

RESUMEN

Ecotropic, xenotropic, and polytropic mouse leukemia viruses (E-, X-, and P-MLVs) exist in mice as infectious viruses and endogenous retroviruses (ERVs) inserted into mouse chromosomes. All three MLV subgroups are linked to leukemogenesis, which involves generation of recombinants with polytropic host range. Although P-MLVs are deemed to be the proximal agents of disease induction, few biologically characterized infectious P-MLVs have been sequenced for comparative analysis. We analyzed the complete genomes of 16 naturally occurring infectious P-MLVs, 12 of which were typed for pathogenic potential. We sought to identify ERV progenitors, recombinational hot spots, and segments that are always replaced, never replaced, or linked to pathogenesis or host range. Each P-MLV has an E-MLV backbone with P- or X-ERV replacements that together cover 100% of the recombinant genomes, with different substitution patterns for X- and P-ERVs. Two segments are always replaced, both coding for envelope (Env) protein segments: the N terminus of the surface subunit and the cytoplasmic tail R peptide. Viral gag gene replacements are influenced by host restriction genes Fv1 and Apobec3 Pathogenic potential maps to the env transmembrane subunit segment encoding the N-heptad repeat (HR1). Molecular dynamics simulations identified three novel interdomain salt bridges in the lymphomagenic virus HR1 that could affect structural stability, entry or sensitivity to host immune responses. The long terminal repeats of lymphomagenic P-MLVs are differentially altered by recombinations, duplications, or mutations. This analysis of the naturally occurring, sometimes pathogenic P-MLV recombinants defines the limits and extent of intersubgroup recombination and identifies specific sequence changes linked to pathogenesis and host interactions.IMPORTANCE During virus-induced leukemogenesis, ecotropic mouse leukemia viruses (MLVs) recombine with nonecotropic endogenous retroviruses (ERVs) to produce polytropic MLVs (P-MLVs). Analysis of 16 P-MLV genomes identified two segments consistently replaced: one at the envelope N terminus that alters receptor choice and one in the R peptide at the envelope C terminus, which is removed during virus assembly. Genome-wide analysis shows that nonecotropic replacements in the progenitor ecotropic MLV genome are more extensive than previously appreciated, covering 100% of the genome; contributions from xenotropic and polytropic ERVs differentially alter the regions responsible for receptor determination or subject to APOBEC3 and Fv1 restriction. All pathogenic viruses had modifications in the regulatory elements in their long terminal repeats and differed in a helical segment of envelope involved in entry and targeted by the host immune system. Virus-induced leukemogenesis thus involves generation of complex recombinants, and specific replacements are linked to pathogenesis and host restrictions.


Asunto(s)
Especificidad del Huésped/genética , Virus de la Leucemia Murina/clasificación , Virus de la Leucemia Murina/patogenicidad , Leucemia Experimental/virología , Infecciones por Retroviridae/virología , Infecciones Tumorales por Virus/virología , Proteínas Virales/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Evolución Molecular , Genoma Viral , Virus de la Leucemia Murina/genética , Ratones , Simulación de Dinámica Molecular , Conformación Proteica , Receptores Virales/genética , Receptores Virales/metabolismo , Homología de Secuencia , Secuencias Repetidas Terminales , Proteínas Virales/química , Proteínas Virales/metabolismo
15.
Virology ; 497: 53-58, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27423269

RESUMEN

Xenotropic/polytropic mouse leukemia viruses (X/P-MLVs) use the XPR1 gammaretrovirus receptor for entry. X/P-MLV host range is defined by usage of naturally occurring restrictive XPR1 receptors, and is governed by polymorphisms in the virus envelope glycoprotein and in XPR1. Here, we examined receptors of four mammalian species permissive to all X/P-MLVs (Mus dunni, human, rabbit, mink). Interference assays showed the four to be functionally distinct. Preinfection with X-MLVs consistently blocked all nine XPR1-dependent viruses, while preinfection with P-MLVs and wild mouse X/P-MLVs produced distinctive interference patterns in the four cells. These patterns indicate shared usage of independent, but not always fully functional, receptor sites. XPR1 sequence comparisons identified candidate sites in receptor-determining regions that correlate with some interference patterns. The evolutionary record suggests that the X/P-MLV tropism variants evolved to adapt to host receptor polymorphisms, to circumvent blocks by competing viruses or to avoid host-encoded envelope glycoproteins acquired for defense.


Asunto(s)
Gammaretrovirus/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virales/metabolismo , Infecciones por Retroviridae/virología , Interferencia Viral , Tropismo Viral , Secuencia de Aminoácidos , Animales , Evolución Biológica , Células Cultivadas , Humanos , Ratones , Visón , Polimorfismo Genético , Conejos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Virales/química , Receptores Virales/genética , Especificidad de la Especie , Receptor de Retrovirus Xenotrópico y Politrópico
16.
J Virol ; 90(8): 4186-98, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26865715

RESUMEN

UNLABELLED: Mouse leukemia viruses (MLVs) are found in the common inbred strains of laboratory mice and in the house mouse subspecies ofMus musculus Receptor usage and envelope (env) sequence variation define three MLV host range subgroups in laboratory mice: ecotropic, polytropic, and xenotropic MLVs (E-, P-, and X-MLVs, respectively). These exogenous MLVs derive from endogenous retroviruses (ERVs) that were acquired by the wild mouse progenitors of laboratory mice about 1 million years ago. We analyzed the genomes of seven MLVs isolated from Eurasian and American wild mice and three previously sequenced MLVs to describe their relationships and identify their possible ERV progenitors. The phylogenetic tree based on the receptor-determining regions ofenvproduced expected host range clusters, but these clusters are not maintained in trees generated from other virus regions. Colinear alignments of the viral genomes identified segmental homologies to ERVs of different host range subgroups. Six MLVs show close relationships to a small xenotropic ERV subgroup largely confined to the inbred mouse Y chromosome.envvariations define three E-MLV subtypes, one of which carries duplications of various sizes, sequences, and locations in the proline-rich region ofenv Outside theenvregion, all E-MLVs are related to different nonecotropic MLVs. These results document the diversity in gammaretroviruses isolated from globally distributedMussubspecies, provide insight into their origins and relationships, and indicate that recombination has had an important role in the evolution of these mutagenic and pathogenic agents. IMPORTANCE: Laboratory mice carry mouse leukemia viruses (MLVs) of three host range groups which were acquired from their wild mouse progenitors. We sequenced the complete genomes of seven infectious MLVs isolated from geographically separated Eurasian and American wild mice and compared them with endogenous germ line retroviruses (ERVs) acquired early in house mouse evolution. We did this because the laboratory mouse viruses derive directly from specific ERVs or arise by recombination between different ERVs. The six distinctively different wild mouse viruses appear to be recombinants, often involving different host range subgroups, and most are related to a distinctive, largely Y-chromosome-linked MLV ERV subtype. MLVs with ecotropic host ranges show the greatest variability with extensive inter- and intrasubtype envelope differences and with homologies to other host range subgroups outside the envelope. The sequence diversity among these wild mouse isolates helps define their relationships and origins and emphasizes the importance of recombination in their evolution.


Asunto(s)
Variación Genética , Virus de la Leucemia Murina/genética , Ratones/virología , Animales , Animales de Laboratorio/virología , Animales Salvajes/virología , Secuencia de Bases , Genes pol , Genoma Viral , Virus de la Leucemia Murina/clasificación , Ratones/genética , Ratones Endogámicos , Datos de Secuencia Molecular , ARN Viral , Análisis de Secuencia de ARN
17.
Viruses ; 7(1): 1-26, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25549291

RESUMEN

The mouse gammaretroviruses associated with leukemogenesis are found in the classical inbred mouse strains and in house mouse subspecies as infectious exogenous viruses (XRVs) and as endogenous retroviruses (ERVs) inserted into their host genomes. There are three major mouse leukemia virus (MuLV) subgroups in laboratory mice: ecotropic, xenotropic, and polytropic. These MuLV subgroups differ in host range, pathogenicity, receptor usage and subspecies of origin. The MuLV ERVs are recent acquisitions in the mouse genome as demonstrated by the presence of many full-length nondefective MuLV ERVs that produce XRVs, the segregation of these MuLV subgroups into different house mouse subspecies, and by the positional polymorphism of these loci among inbred strains and individual wild mice. While some ecotropic and xenotropic ERVs can produce XRVs directly, others, especially the pathogenic polytropic ERVs, do so only after recombinations that can involve all three ERV subgroups. Here, I describe individual MuLV ERVs found in the laboratory mice, their origins and geographic distribution in wild mouse subspecies, their varying ability to produce infectious virus and the biological consequences of this expression.


Asunto(s)
Retrovirus Endógenos/genética , Evolución Molecular , Virus de la Leucemia Murina/genética , Animales , Ratones , Topografía Médica
18.
Virology ; 468-470: 63-71, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25151060

RESUMEN

Entry determinants in the XPR1 receptor for the xenotropic/polytropic mouse leukemia viruses (XP-MLVs) lie in its third and fourth putative extracellular loops (ECLs). The critical ECL3 receptor determinant overlies a splice donor and is evolutionarily conserved in vertebrate XPR1 genes; 2 of the 3 rare replacement mutations at this site destroy this receptor determinant. The 13 residue ECL4 is hypervariable, and replacement mutations carrying an intact ECL3 site alter but do not abolish receptor activity, including replacement of the entire loop with that of a jellyfish (Cnidaria) XPR1. Because ECL4 deletions are found in all X-MLV-infected Mus subspecies, we deleted each ECL4 residue to determine if deletion-associated restriction is residue-specific or is effected by loop size. All deletions influence receptor function, although different deletions affect different XP-MLVs. Thus, receptor usage of a constrained splice site and a loop that tolerates mutations severely limits the likelihood of host escape mutations.


Asunto(s)
Gammaretrovirus/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virales/metabolismo , Animales , Línea Celular , Clonación Molecular , Cricetinae , Variación Genética , Ratones , Sitios de Empalme de ARN , Receptores Acoplados a Proteínas G/genética , Receptores Virales/genética , Escifozoos , Internalización del Virus , Receptor de Retrovirus Xenotrópico y Politrópico
19.
Proc Natl Acad Sci U S A ; 111(23): 8595-600, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24912157

RESUMEN

The compound immunodeficiencies in nonobese diabetic (NOD) inbred mice homozygous for the Prkdc(scid) and Il2rg(null) alleles (NSG mice) permit engraftment of a wide-range of primary human cells, enabling sophisticated modeling of human disease. In studies designed to define neoplastic stem cells of primary myelofibrosis (PMF), a myeloproliferative neoplasm characterized by profound disruption of the hematopoietic microenvironment, we observed a high frequency of acute myeloid leukemia (AML) in NSG mice. AML was of mouse origin, confined to PMF-xenografted mice, and contained multiple clonal integrations of ecotropic murine leukemia virus (E-MuLV). Significantly, MuLV replication was not only observed in diseased mice, but also in nontreated NSG controls. Furthermore, in addition to the single ecotropic endogenous retrovirus (eERV) located on chromosome 11 (Emv30) in the NOD genome, multiple de novo germ-line eERV integrations were observed in mice from each of four independent NSG mouse colonies. Analysis confirmed that E-MuLV originated from the Emv30 provirus and that recombination events were not necessary for virus replication or AML induction. Pathogenicity is thus likely attributable to PMF-mediated paracrine stimulation of mouse myeloid cells, which serve as targets for retroviral infection and transformation, as evidenced by integration into the Evi1 locus, a hotspot for retroviral-induced myeloid leukemia. This study thus corroborates a role of paracrine stimulation in PMF disease progression, underlines the importance of target cell type and numbers in MuLV-induced disease, and mandates awareness of replicating MuLV in NOD immunodeficient mice, which can significantly influence experimental results and their interpretation.


Asunto(s)
Retrovirus Endógenos/genética , Leucemia Experimental/genética , Leucemia Mieloide Aguda/genética , Mielofibrosis Primaria/genética , Anciano , Animales , Southern Blotting , Femenino , Humanos , Subunidad gamma Común de Receptores de Interleucina/genética , Subunidad gamma Común de Receptores de Interleucina/metabolismo , Virus de la Leucemia Murina/genética , Leucemia Experimental/patología , Leucemia Experimental/virología , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Ratones Transgénicos , Persona de Mediana Edad , Datos de Secuencia Molecular , Mielofibrosis Primaria/patología , Mielofibrosis Primaria/virología , Provirus/genética , Trasplante Heterólogo , Integración Viral/genética , Replicación Viral/genética , Adulto Joven
20.
Curr Opin Virol ; 3(6): 657-63, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23992668

RESUMEN

Laboratory mice carry three host range groups of gammaretroviruses all of which are linked to leukemia induction. Although polytropic mouse leukemia viruses (P-MLVs) are generally recognized as the proximate cause of MLV-induced leukemias in laboratory mice, wild mice that carry only endogenous P-MLVs do not produce infectious virus and are not prone to disease; these mice carry the permissive XPR1 retroviral receptor and an attenuated variant of the retroviral restriction factor, APOBEC3. In contrast, Eurasian mice carrying ecotropic and xenotropic MLVs have evolved multiple restrictive XPR1 variants, other factors that interfere with MLV entry, and more effectively antiviral variants of APOBEC3. These different antiviral restrictions in Mus musculus subspecies suggest that the different virus types found in these natural populations may pose different but largely uncharacterized survival risks in their host subspecies.


Asunto(s)
Citidina Desaminasa/metabolismo , Gammaretrovirus/inmunología , Interacciones Huésped-Patógeno , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virales/metabolismo , Animales , Citidina Desaminasa/inmunología , Gammaretrovirus/fisiología , Regulación Viral de la Expresión Génica , Ratones , Internalización del Virus , Replicación Viral , Receptor de Retrovirus Xenotrópico y Politrópico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA