Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Biomolecules ; 14(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38785950

RESUMEN

Limited substrate availability because of the blood-brain barrier (BBB) has made the brain develop specific molecular mechanisms to survive, using lactate synthesized by astrocytes as a source of energy in neurons. To understand if lactate improves cellular viability and susceptibility to glutamate toxicity, primary cortical cells were incubated in glucose- or lactate-containing media and toxic concentrations of glutamate for 24 h. Cell death was determined by immunostaining and lactate dehydrogenase (LDH) release. Mitochondrial membrane potential and nitric oxide (NO) levels were measured using Tetramethylrhodamine, methyl ester (TMRM) and 4-Amino-5-Methylamino-2',7'-Difluorofluorescein Diacetate (DAF-FM) live staining, respectively. LDH activity was quantified in single cells in the presence of lactate (LDH substrate) and oxamate (LDH inhibitor). Nuclei of cells were stained with DAPI and neurons with MAP2. Based on the distance between neurons and glial cells, they were classified as linked (<10 µm) and non-linked (>10 µm) neurons. Lactate increased cell death rate and the mean value of endogenous NO levels compared to glucose incubations. Mitochondrial membrane potential was lower in the cells cultured with lactate, but this effect was reversed when glutamate was added to the lactate medium. LDH activity was higher in linked neurons compared to non-linked neurons, supporting the hypothesis of the existence of the lactate shuttle between astrocytes and at least a portion of neurons. In conclusion, glucose or lactate can equally preserve primary cortical neurons, but those neurons having a low level of LDH activity and incubated with lactate cannot cover high energetic demand solely with lactate and become more susceptible to glutamate toxicity.


Asunto(s)
Glucosa , Ácido Glutámico , L-Lactato Deshidrogenasa , Ácido Láctico , Potencial de la Membrana Mitocondrial , Neuronas , Animales , Ácido Glutámico/metabolismo , Ácido Glutámico/toxicidad , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , L-Lactato Deshidrogenasa/metabolismo , Células Cultivadas , Ácido Láctico/metabolismo , Glucosa/metabolismo , Metabolismo Energético/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/citología , Óxido Nítrico/metabolismo , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ratas , Muerte Celular/efectos de los fármacos
2.
Antioxidants (Basel) ; 13(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38790707

RESUMEN

Reactive oxygen species (ROS) are highly reactive oxygen derivatives that include free radicals such as superoxide anion radical (O2•-) and hydroxyl radical (HO•), as well as non-radical molecules hydrogen peroxide (H2O2), peroxynitrite (ONOO-), and hypochlorous acid (HOCl) [...].

3.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38612675

RESUMEN

There is a growing body of evidence that ER stress and the unfolded protein response (UPR) play a key role in numerous diseases. Impaired liver perfusion and ER stress often accompany each other in liver diseases. However, the exact impact of ER stress and UPR on the hepatic perfusion is not fully understood. The aim of this study was to disclose the effect of ER stress and UPR on the size of liver vessels and on the levels of Ca2+ and nitric oxide (NO), critical regulators of vascular tonus. This study was carried out in precisely cut liver tissue slices. Confocal microscopy was used to create 3D images of vessels. NO levels were determined either using either laser scan microscopy (LSM) in cells or by NO-analyser in medium. Ca2+ levels were analysed by LSM. We show that tunicamycin, an inducer of ER stress, acts similarly with vasodilator acetylcholine. Both exert a similar effect on the NO and Ca2+ levels; both induce significant vasodilation. Notably, this vasodilative effect persisted despite individual inhibition of UPR pathways-ATF-6, PERK, and IRE1-despite confirming the activation of UPR. Experiments with HUVEC cells showed that elevated NO levels did not result from endothelial NO synthase (eNOS) activation. Our study suggests that tunicamycin-mediated ER stress induces liver vessel vasodilation in an NO-dependent manner, which is mediated by intracellular nitrodilator-activatable NO store (NANOS) in smooth muscle cells rather than by eNOS.


Asunto(s)
Estrés del Retículo Endoplásmico , Vasodilatación , Tunicamicina/farmacología , Respuesta de Proteína Desplegada , Hígado
4.
Micromachines (Basel) ; 15(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38675310

RESUMEN

Glycerol is employed as a functional component of heat-transfer fluids, which are of use in both bioreactors and various biosensor devices. At the same time, flowing glycerol was reported to cause considerable triboelectric effects. Herein, by using atomic force microscopy (AFM), we have revealed the long-term effect of glycerol flow, stopped in a ground-shielded coiled heat exchanger, on horseradish peroxidase (HRP) adsorption on mica. Namely, the solution of HRP was incubated in the vicinity of the side of the cylindrical coil with stopped glycerol flow, and then HRP was adsorbed from this solution onto a mica substrate. This incubation has been found to markedly increase the content of aggregated enzyme on mica-as compared with the control enzyme sample. We explain the phenomenon observed by the influence of triboelectrically induced electromagnetic fields of non-trivial topology. The results reported should be further considered in the development of flow-based heat exchangers of biosensors and bioreactors intended for operation with enzymes.

5.
Scientifica (Cairo) ; 2024: 2763147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487733

RESUMEN

The study's main aim was to evaluate the effects of complex mineral fertilizers on the complex properties of heavy loam soils in the grey forests of Russia in terms of applying individual soil nutrition components from experiments with fodder beets. This study employed a rigorous and systematic approach to accomplish the defined goal. Specifically, the research was conducted within a seven-field crop rotation system, with fodder beets serving as the primary experimental crop. In addition, a model experiment resembling a vegetation trial was undertaken, incorporating seven distinct schemes involving various types of fertilizers. This design facilitated the evaluation of the effectiveness of each fertilizer type. The study results demonstrate that complex fertilizers impact the soil's chemical and biophysical parameters. Soil acidity decreases through the use of complex, high-nitrogen fertilizers. Major chemical nutrients (nitrogen, phosphorus, and potassium) in plant biomass and soil also have a high degree of transition. It is explained by the effects of combining elements on the destruction intensity of the crystalline lattice in the basic structures of potassium, phosphorus, and nitrogen. There is also evidence that complex fertilizers can improve humus quality and replenish its reserves. All the aforementioned impacts of complex fertilizers on the crop contribute to the high productivity and yield of forage beet. The results of the study may help optimize the fertilization process, improve the quality and quantity of agricultural products, as well as increase soil fertility, and reduce the negative impact of agrochemicals on the environment.

6.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396952

RESUMEN

Mitochondrial dysfunction and glutamate toxicity are associated with neural disorders, including brain trauma. A review of the literature suggests that toxic and transmission actions of neuronal glutamate are spatially and functionally separated. The transmission pathway utilizes synaptic GluN2A receptors, rapidly released pool of glutamate, evoked release of glutamate mediated by Synaptotagmin 1 and the amount of extracellular glutamate regulated by astrocytes. The toxic pathway utilizes extrasynaptic GluN2B receptors and a cytoplasmic pool of glutamate, which results from the spontaneous release of glutamate mediated by Synaptotagmin 7 and the neuronal 2-oxoglutarate dehydrogenase complex (OGDHC), a tricarboxylic acid (TCA) cycle enzyme. Additionally, the inhibition of OGDHC observed upon neuro-inflammation is due to an excessive release of reactive oxygen/nitrogen species by immune cells. The loss of OGDHC inhibits uptake of glutamate by mitochondria, thus facilitating its extracellular accumulation and stimulating toxic glutamate pathway without affecting transmission. High levels of extracellular glutamate lead to dysregulation of intracellular redox homeostasis and cause ferroptosis, excitotoxicity, and mitochondrial dysfunction. The latter affects the transmission pathway demanding high-energy supply and leading to cell death. Mitochondria aggravate glutamate toxicity due to impairments in the TCA cycle and become a victim of glutamate toxicity, which disrupts oxidative phosphorylation. Thus, therapies targeting the TCA cycle in neurological disorders may be more efficient than attempting to preserve mitochondrial oxidative phosphorylation.


Asunto(s)
Ácido Glutámico , Enfermedades Mitocondriales , Humanos , Ácido Glutámico/metabolismo , Mitocondrias/metabolismo , Ciclo del Ácido Cítrico , Especies Reactivas de Oxígeno/metabolismo , Inflamación/metabolismo , Enfermedades Mitocondriales/metabolismo
7.
Biomolecules ; 13(12)2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38136647

RESUMEN

Currently, there is great interest in the development of highly sensitive bioanalytical systems for diagnosing diseases at an early stage, when pathological biomarkers are present in biological fluids at low concentrations and there are no clinical manifestations. A promising direction is the use of molecular detectors-highly sensitive devices that detect signals from single biomacromolecules. A typical detector in this class is the atomic force microscope (AFM). The high sensitivity of an AFM-based bioanalysis system is determined by the size of the sensing element of an atomic force microscope-the cantilever-the radius of the curvature of which is comparable to that of a biomolecule. Biospecific molecular probe-target interactions are used to ensure detection system specificity. Antibodies, aptamers, synthetic antibodies, and peptides can be used as molecular probes. This study has demonstrated the possibility of using aptamers as molecular probes for AFM-based detection of the ovarian cancer biomarker CA125. Antigen detection in a nanomolar solution was carried out using AFM chips with immobilized aptamers, commercially available or synthesized based on sequences from open sources. Both aptamer types can be used for antigen detection, but the availability of sequence information enables additional modeling of the aptamer structure with allowance for modifications necessary for immobilization of the aptamer on an AFM chip surface. Information on the structure and oligomeric composition of aptamers in the solution was acquired by combining small-angle X-ray scattering and molecular modeling. Modeling enabled pre-selection, before the experimental stage, of aptamers for use as surface-immobilized molecular probes.


Asunto(s)
Aptámeros de Nucleótidos , Microscopía de Fuerza Atómica , Aptámeros de Nucleótidos/química , Sondas Moleculares , Modelos Moleculares
8.
Psychiatr Danub ; 35(Suppl 2): 141-149, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37800217

RESUMEN

BACKGROUND: Post-traumatic stress disorder (PTSD) is a trauma- or stressor-related mental health condition with high socioeconomic burden. We aimed in this review to identify promising genetic markers predisposing for PTSD, which might serve in the design subsequent studies aiming to develop PTSD prevention and remediation measures. SUBJECTS AND METHODS: Our search queries in the PubMed database yielded 547 articles, of which 20 met our inclusion criteria for further analysis: published between 2018 and 2022, original research, containing molecular-genetic and statistical data, containing diagnosis verification methods, PTSD as a primary condition, and a sample of at least 60 patients. RESULTS: Among the 20 analyzed studies were reports of significant associations between PTSD and: FKBP5 variants rs9470080, regardless of the C or T allele; two FKBP5 haplotypes (A-G-C-C and A-G-C-T); gene-gene DRDхANNK1-COMT (rs1800497 × rs6269) and OXTR-DRD2 (rs2268498 × rs1801028); C-allele of CRHR1 (rs1724402). Other findings, such as the association of FKBP5 haplotypes (A-G-C-C, A-G-C-T) and the FKBP5-CRHR1 genotype, were of lesser statistical significance and less extensively studied. CONCLUSIONS: Although our literature analysis implicates certain genetic factors in PTSD, our understanding of the polygenic nature underlying the disorder remains limited, especially considering the hitherto underexplored epigenetic mechanisms. Future research endeavors should prioritize exploring these aspects to provide a more nuanced understanding of PTSD and its genetic underpinnings.


Asunto(s)
Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/prevención & control , Trastornos por Estrés Postraumático/diagnóstico , Haplotipos , Polimorfismo de Nucleótido Simple , Genotipo , Alelos
9.
Org Biomol Chem ; 21(42): 8477-8481, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37850356

RESUMEN

A straightforward and selective way for the preparation of amides from nitroarenes and carboxylic acids using carbon monoxide as a reductant was developed. This protocol does not require any non-gaseous additives, thus simplifying product isolation. Aliphatic carboxylic acid was modified in the presence of aromatic ones, and reducible functional groups such as CC, Ar-Br, and R-NO2 were saved.

10.
Micromachines (Basel) ; 14(10)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37893383

RESUMEN

The development of highly sensitive diagnostic systems for the early revelation of diseases in humans is one of the most important tasks of modern biomedical research, and the detection of the core antigen of the hepatitis C virus (HCVcoreAg)-a protein marker of the hepatitis C virus-is just the case. Our study is aimed at testing the performance of the nanoribbon biosensor in the case of the use of two different types of molecular probes: the antibodies and the aptamers against HCVcoreAg. The nanoribbon sensor chips employed are based on "silicon-on-insulator structures" (SOI-NR). Two different HCVcoreAg preparations are tested: recombinant ß-galactosidase-conjugated HCVcoreAg ("Virogen", Watertown, MA, USA) and recombinant HCVcoreAg ("Vector-Best", Novosibirsk, Russia). Upon the detection of either type of antigen preparation, the lowest concentration of the antigen detectable in buffer with pH 5.1 was found to be approximately equal, amounting to ~10-15 M. This value was similar upon the use of either type of molecular probes.

11.
Sensors (Basel) ; 23(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687982

RESUMEN

Prostate cancer (PC) is one of the major causes of death among elderly men. PC is often diagnosed later in progression due to asymptomatic early stages. Early detection of PC is thus crucial for effective PC treatment. The aim of this study is the simultaneous highly sensitive detection of a palette of PC-associated microRNAs (miRNAs) in human plasma samples. With this aim, a nanoribbon biosensor system based on "silicon-on-insulator" structures (SOI-NR biosensor) has been employed. In order to provide biospecific detection of the target miRNAs, the surface of individual nanoribbons has been sensitized with DNA oligonucleotide probes (oDNA probes) complementary to the target miRNAs. The lowest concentration of nucleic acids, detectable with our biosensor, has been found to be 1.1 × 10-17 M. The successful detection of target miRNAs, isolated from real plasma samples of PC patients, has also been demonstrated. We believe that the development of highly sensitive nanotechnology-based biosensors for the detection of PC markers is a step towards personalized medicine.


Asunto(s)
MicroARNs , Nanotubos de Carbono , Ácidos Nucleicos , Neoplasias de la Próstata , Anciano , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Nanotecnología
12.
Int J Mycobacteriol ; 12(2): 129-134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37338472

RESUMEN

Background: The introduction of a method based on matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-ToF mass spectrometry) into the practice of laboratories significantly increased the identification of acid-resistant bacteria (ARB). Methods: Seventy-four nontuberculous mycobacteria (NTM) cultures identified by deoxyribonucleic acid (DNA) hybridization, polymerase chain reaction, Sanger sequencing, and MALDI-ToF mass spectrometry. Results: Analysis of the identification results obtained by the methods of DNA hybridization and Sanger sequencing showed a complete match only for 67.6% of samples of the total number of cultures included in the study. The partial match of the identification results was 68.9%. When comparing the results of the identification of 74 samples obtained by MALDI-ToF mass spectrometry to the results obtained by sequencing, full match of identification of Mycobacterium chimaera/Mycobacterium intracelullare, Mycobacterium porcinum/Mycobacterium peregrinum and Mycobacterium tuberculosis complex was found for 90.5% of the samples; the partial match of the results - for 4.1%.. DNA hybridization as a method for identifying NTM showed acceptable sensitivity and specificity; however, for mass spectrometry, a significantly higher sensitivity with comparable specificity was determined. Conclusions: Mass spectrometry is an important element in the modern system of species identification of microorganisms. The optimization of sample preparation protocols and assessment of the impact on the identification of new techniques of cultivation of microorganisms can significantly improve the quality of identification of microorganisms from the ARB group. In this case, accurate species identification and the development of algorithms for its application will improve the diagnosis of diseases caused by ARB.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Micobacterias no Tuberculosas/genética , ADN
13.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240343

RESUMEN

Mass spectrometry (MS) is one of the main techniques for protein identification. Herein, MS has been employed for the identification of bovine serum albumin (BSA), which was covalently immobilized on the surface of a mica chip intended for investigation by atomic force microscopy (AFM). For the immobilization, two different types of crosslinkers have been used: 4-benzoylbenzoic acid N-succinimidyl ester (SuccBB) and dithiobis(succinimidyl propionate) (DSP). According to the data obtained by using an AFM-based molecular detector, the SuccBB crosslinker was more efficient in BSA immobilization than the DSP. The type of crosslinker used for protein capturing has been found to affect the results of MS identification. The results obtained herein can be applied in the development of novel systems intended for the highly sensitive analysis of proteins with molecular detectors.


Asunto(s)
Albúmina Sérica Bovina , Microscopía de Fuerza Atómica/métodos , Albúmina Sérica Bovina/química , Espectrometría de Masas/métodos
14.
Biomolecules ; 13(5)2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37238664

RESUMEN

Mitochondrial ROS (mitoROS) control many reactions in cells. Biological effects of mitoROS in vivo can be investigated by modulation via mitochondria-targeted antioxidants (mtAOX, mitoTEMPO). The aim of this study was to determine how mitoROS influence redox reactions in different body compartments in a rat model of endotoxemia. We induced inflammatory response by lipopolysaccharide (LPS) injection and analyzed effects of mitoTEMPO in blood, abdominal cavity, bronchoalveolar space, and liver tissue. MitoTEMPO decreased the liver damage marker aspartate aminotransferase; however, it neither influenced the release of cytokines (e.g., tumor necrosis factor, IL-4) nor decreased ROS generation by immune cells in the compartments examined. In contrast, ex vivo mitoTEMPO treatment substantially reduced ROS generation. Examination of liver tissue revealed several redox paramagnetic centers sensitive to in vivo LPS and mitoTEMPO treatment and high levels of nitric oxide (NO) in response to LPS. NO levels in blood were lower than in liver, and were decreased by in vivo mitoTEMPO treatment. Our data suggest that (i) inflammatory mediators are not likely to directly contribute to ROS-mediated liver damage and (ii) mitoTEMPO is more likely to affect the redox status of liver cells reflected in a redox change of paramagnetic molecules. Further studies are necessary to understand these mechanisms.


Asunto(s)
Endotoxemia , Hepatopatías , Ratas , Animales , Especies Reactivas de Oxígeno , Lipopolisacáridos/farmacología , Endotoxemia/inducido químicamente , Oxidación-Reducción
15.
Micromachines (Basel) ; 14(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37241647

RESUMEN

Glycerol is a usable component of heat-transfer fluids, and is thus suitable for the use in microchannel-based heat exchangers in biosensors and microelectronic devices. The flow of a fluid can lead to the generation of electromagnetic fields, which can affect enzymes. Herein, by means of atomic force microscopy (AFM) and spectrophotometry, a long-term effect of stopped flow of glycerol through a coiled heat exchanger on horseradish peroxidase (HRP) has been revealed. Samples of buffered HRP solution were incubated near either the inlet or the outlet sections of the heat exchanger after stopping the flow. It has been found that both the enzyme aggregation state and the number of mica-adsorbed HRP particles increase after such an incubation for 40 min. Moreover, the enzymatic activity of the enzyme incubated near the inlet section has been found to increase in comparison with that of the control sample, while the activity of the enzyme incubated near the outlet section remained unaffected. Our results can find application in the development of biosensors and bioreactors, in which flow-based heat exchangers are employed.

17.
Vet Sci ; 10(4)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37104429

RESUMEN

We conducted a clinical veterinary study on neutron capture therapy (NCT) at a neutron-producing accelerator with seven incurable pets with spontaneous tumors and gadolinium as a neutron capture agent (gadolinium neutron capture therapy, or GdNCT). Gadolinium-containing dimeglumine gadopentetate, or Gd-DTPA (Magnevist®, 0.6 mL/kg b.w.), was used. We observed mild and reversible toxicity related to the treatment. However, no significant tumor regression in response to the treatment was observed. In most cases, there was continued tumor growth. Overall clinical improvement after treatment was only temporary. The use of Gd-DTPA for NCT had no significant effects on the life expectancy and quality of life of animals with spontaneous tumors. Further experiments using more advanced gadolinium compounds are needed to improve the effect of GdNCT so that it can become an alternative to boron neutron capture therapy. Such studies are also necessary for further NCT implementation in clinical practice as well as in veterinary medicine.

18.
Int J Circumpolar Health ; 82(1): 2183931, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36880131

RESUMEN

In order to be digested, the disaccharide trehalose needs to be cleaved by the trehalase enzyme. There were reports suggesting that trehalase deficiency was more common in high-latitude than in the temperate climate populations. New horizons were opened for the epidemiologic research of trehalase enzymopathy when it became clear that reduced trehalase activity is determined by the A allele of tTREH gene (rs2276064). The aim of this study was to analyze the frequencies of the trehalase gene alleles and genotypes among the indigenous peoples of Siberia and the Russian Far East. We genotyped 567 samples representing the indigenous peoples of Siberia and the Russian Far East and 146 samples representing Eastern Slavs as the reference dataset. We found that the frequencies of the A*TREH alleles increased to the east. The A*TREH allele frequency was 0.03 in the reference group, 0.13-0.26 in the North-West Siberian indigenous populations, 0.29-0.30 in the South Siberia, 0.43 in West Siberia, and 0.46 in the low Amur populations. The highest frequency of the A allele (0.63) was observed in the Chukchi and Koryak populations. From 1 to 5% of European origin individuals are at risk of trehalase enzymopathy. In the indigenous populations, the frequency of the A*TREH allele varies 13% to 63%, whereas the frequency of the AA*TREH genotype from 3% to 39%. Thus, the total risk of trehalase enzymopathy among the homo- and heterozygous carriers of the A*TREH allele in the studied indigenous populations may be as high as 24% to 86%.


Asunto(s)
Trehalasa , Humanos , Siberia/epidemiología , Trehalasa/genética , Prevalencia , Federación de Rusia/epidemiología , Asia Oriental
19.
Redox Biol ; 62: 102669, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36933393

RESUMEN

Brain injury is accompanied by neuroinflammation, accumulation of extracellular glutamate and mitochondrial dysfunction, all of which cause neuronal death. The aim of this study was to investigate the impact of these mechanisms on neuronal death. Patients from the neurosurgical intensive care unit suffering aneurysmal subarachnoid hemorrhage (SAH) were recruited retrospectively from a respective database. In vitro experiments were performed in rat cortex homogenate, primary dissociated neuronal cultures, B35 and NG108-15 cell lines. We employed methods including high resolution respirometry, electron spin resonance, fluorescent microscopy, kinetic determination of enzymatic activities and immunocytochemistry. We found that elevated levels of extracellular glutamate and nitric oxide (NO) metabolites correlated with poor clinical outcome in patients with SAH. In experiments using neuronal cultures we showed that the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the glutamate-dependent segment of the tricarboxylic acid (TCA) cycle, is more susceptible to the inhibition by NO than mitochondrial respiration. Inhibition of OGDHC by NO or by succinyl phosphonate (SP), a highly specific OGDHC inhibitor, caused accumulation of extracellular glutamate and neuronal death. Extracellular nitrite did not substantially contribute to this NO action. Reactivation of OGDHC by its cofactor thiamine (TH) reduced extracellular glutamate levels, Ca2+ influx into neurons and cell death rate. Salutary effect of TH against glutamate toxicity was confirmed in three different cell lines. Our data suggest that the loss of control over extracellular glutamate, as described here, rather than commonly assumed impaired energy metabolism, is the critical pathological manifestation of insufficient OGDHC activity, leading to neuronal death.


Asunto(s)
Ácido Glutámico , Complejo Cetoglutarato Deshidrogenasa , Ratas , Animales , Ácido Glutámico/metabolismo , Estudios Retrospectivos , Citoplasma/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Mitocondrias/metabolismo , Tiamina/metabolismo , Tiamina/farmacología , Óxido Nítrico/metabolismo
20.
Nat Metab ; 5(3): 495-515, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36941451

RESUMEN

Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing.


Asunto(s)
Insuficiencia de Crecimiento , ARN Nucleotidiltransferasas , Animales , Humanos , Ratones , Ratones Noqueados , Debilidad Muscular/genética , Músculos , ARN Nucleotidiltransferasas/química , ARN Nucleotidiltransferasas/genética , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...