Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Neuromuscul Disord ; 41: 24-28, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38870649

RESUMEN

Primary hypokalemic periodic paralysis (HypoPP) is a skeletal muscle channelopathy most commonly caused by pathogenic variants in the calcium channel gene, CACNA1S. HypoPP can present with attacks of paralysis and/or permanent muscle weakness. Previous studies have shown that patients with HypoPP can have impaired quality of life (QoL). In this cross-sectional study, we aimed to describe the QoL in patients with HypoPP caused by pathogenic variants in CACNA1S using The Individualized Neuromuscular Quality of Life (INQoL) questionnaire, a validated tool to measure the QoL of patients with neuromuscular diseases (higher score, worse QoL). We showed that muscle weakness and fatigue were the symptoms with the greatest impact on participants' lives and that "activities", in the life domain of the INQoL, was most affected by HypoPP. Furthermore, we showed that the total INQoL score increased with age. Low QoL was primarily driven by progressive permanent muscle weakness and not attacks of paralysis, although half of the participants reported that attacks of paralysis challenged their daily life. The results suggest that special attention should be given to muscle weakness and fatigue in patients with HypoPP.

2.
Front Physiol ; 15: 1305171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745836

RESUMEN

Introduction: Elite breath-hold divers (BHD) enduring apneas of more than 5 min are characterized by tolerance to arterial blood oxygen levels of 4.3 kPa and low oxygen-consumption in their hearts and skeletal muscles, similar to adult seals. Adult seals possess an adaptive higher hemoglobin-concentration and Bohr effect than pups, and when sedated, adult seals demonstrate a blood shift from the spleen towards the brain, lungs, and heart during apnea. We hypothesized these observations to be similar in human BHD. Therefore, we measured hemoglobin- and 2,3-biphosphoglycerate-concentrations in BHD (n = 11) and matched controls (n = 11) at rest, while myocardial mass, spleen and lower extremity volumes were assessed at rest and during apnea in BHD. Methods and results: After 4 min of apnea, left ventricular myocardial mass (LVMM) determined by 15O-H2O-PET/CT (n = 6) and cardiac MRI (n = 6), was unaltered compared to rest. During maximum apnea (∼6 min), lower extremity volume assessed by DXA-scan revealed a ∼268 mL decrease, and spleen volume, assessed by ultrasonography, decreased ∼102 mL. Compared to age, BMI and VO2max matched controls (n = 11), BHD had similar spleen sizes and 2,3- biphosphoglycerate-concentrations, but higher total hemoglobin-concentrations. Conclusion: Our results indicate: 1) Apnea training in BHD may increase hemoglobin concentration as an oxygen conserving adaptation similar to adult diving mammals. 2) The blood shift during dry apnea in BHD is 162% more from the lower extremities than from the spleen. 3) In contrast to the previous theory of the blood shift demonstrated in sedated adult seals, blood shift is not towards the heart during dry apnea in humans.

3.
Neuromuscul Disord ; 34: 9-18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38052667

RESUMEN

Acute liver failure has been reported sporadically in patients with spinal muscular atrophy (SMA) and other neuromuscular disorders with low skeletal muscle mass receiving recommended dosages of acetaminophen. It is suggested that low skeletal muscle mass may add to the risk of toxicity. We aimed to describe the pharmacokinetics and safety of acetaminophen in patients with SMA. We analyzed acetaminophen metabolites and liver biomarkers in plasma from SMA patients and healthy controls (HC) every hour for six or eight hours on day 1 and day 3 of treatment with therapeutic doses of acetaminophen. Twelve patients with SMA (six adults and six children) and 11 HC participated in the study. Adult patients with SMA had significantly lower clearance of acetaminophen compared to HC (14.1 L/h vs. 21.5 L/h). Formation clearance of acetaminophen metabolites, glucuronide, sulfate, and oxidative metabolites were two-fold lower in the patients compared to HC. The liver transaminases and microRNAs increased nine-fold in one adult SMA patient after two days of treatment. The other patients and HC did not develop abnormal liver biomarkers. In this study, patients with SMA had lower clearance and slower metabolism of acetaminophen, and one patient developed liver involvement. We recommend giving 15 mg/kg/dose to SMA adults (with a maximum of 4000 mg/day) and monitoring standard liver biomarkers 48 h after first-time treatment of acetaminophen.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Atrofia Muscular Espinal , Atrofias Musculares Espinales de la Infancia , Adulto , Niño , Humanos , Acetaminofén/efectos adversos , Atrofia Muscular Espinal/tratamiento farmacológico , Biomarcadores , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológico
4.
JACC Heart Fail ; 12(4): 740-753, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37999665

RESUMEN

BACKGROUND: Genetic variants in titin (TTN) are associated with dilated cardiomyopathy (DCM) and skeletal myopathy. However, the skeletal muscle phenotype in individuals carrying heterozygous truncating TTN variants (TTNtv), the leading cause of DCM, is understudied. OBJECTIVES: This study aimed to assess the skeletal muscle phenotype associated with TTNtv. METHODS: Participants with TTNtv were included in a cross-sectional study. Skeletal muscle fat fraction was evaluated by magnetic resonance imaging (compared with healthy controls and controls with non-TTNtv DCM). Muscle strength was evaluated by dynamometry and muscle biopsy specimens were analyzed. RESULTS: Twenty-five TTNtv participants (11 women, mean age 51 ± 15 years, left ventricular ejection fraction 45% ± 10%) were included (19 had DCM). Compared to healthy controls (n = 25), fat fraction was higher in calf (12.5% vs 9.9%, P = 0.013), thigh (12.2% vs 9.3%, P = 0.004), and paraspinal muscles (18.8% vs 13.9%, P = 0.008) of TTNtv participants. Linear mixed effects modelling found higher fat fractions in TTNtv participants compared to healthy controls (2.5%; 95% CI: 1.4-3.7; P < 0.001) and controls with non-TTNtv genetic DCM (n = 7) (1.5%; 95% CI: 0.2-2.8; P = 0.025). Muscle strength was within 1 SD of normal values. Biopsy specimens from 21 participants found myopathic features in 13 (62%), including central nuclei. Electron microscopy showed well-ordered Z-lines and T-tubuli but uneven and discontinuous M-lines and excessive glycogen depositions flanked by autophagosomes, lysosomes, and abnormal mitochondria with mitophagy. CONCLUSIONS: Mild skeletal muscle involvement was prevalent in patients with TTNtv. The phenotype was characterized by an increased muscle fat fraction and excessive accumulation of glycogen, possibly due to reduced autophagic flux. These findings indicate an impact of TTNtv beyond the heart.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Cardiomiopatía Dilatada/diagnóstico por imagen , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Conectina/genética , Estudios Transversales , Glucógeno , Insuficiencia Cardíaca/genética , Músculo Esquelético/diagnóstico por imagen , Volumen Sistólico , Función Ventricular Izquierda
5.
J Neuroimmunol ; 384: 578215, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37797472

RESUMEN

We investigated the humoral response to the Pfizer-BioNTech COVID-19 (BNT162b2) vaccine in patients with myasthenia gravis on or off immunosuppressants and compared this to the response in healthy individuals. The SARS-CoV-2 IgG response and neutralizing capacity were measured in 83 patients (57 on immunosuppressants) and 332 healthy controls at baseline, three weeks, and two and six months after the vaccine. We found that the proportion of positive humoral response was lower in patients on immunosuppressants vs. controls at three weeks and two months (p ≤ 0.001), but not at six months post-vaccination (p = 0.379).


Asunto(s)
COVID-19 , Miastenia Gravis , Humanos , Vacunas contra la COVID-19 , Vacuna BNT162 , Inmunidad Humoral , SARS-CoV-2 , Anticuerpos Antivirales , Inmunosupresores/uso terapéutico , Vacunación
6.
J Neurol ; 270(12): 6057-6063, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37656291

RESUMEN

BACKGROUND AND OBJECTIVES: Primary hypokalemic periodic paralysis (HypoPP) is an inherited channelopathy most commonly caused by mutations in CACNA1S. HypoPP can present with different phenotypes: periodic paralysis (PP), permanent muscle weakness (PW), and mixed weakness (MW) with both periodic and permanent weakness. Little is known about the natural history of HypoPP. METHODS: In this 3-year follow-up study, we used the MRC scale for manual muscle strength testing and whole-body muscle MRI (Mercuri score) to assess disease progression in individuals with HypoPP-causing mutations in CACNA1S. RESULTS: We included 25 men (mean age 43 years, range 18-76 years) and 12 women (mean age 42 years, range 18-76 years). Two participants were asymptomatic, 21 had PP, 12 MW, and two PW. The median number of months between baseline and follow-up was 42 (range 26-52). Muscle strength declined in 11 patients during follow-up. Four of the patients with a decline in muscle strength had no attacks of paralysis during follow-up, and two of these patients had never had attacks of paralysis. Fat replacement of muscles increased in 27 patients during follow-up. Eight of the patients with increased fat replacement had no attacks of paralysis during follow-up, and two of these patients had never had attacks of paralysis. DISCUSSION: The study demonstrates that HypoPP can be a progressive myopathy in both patients with and without attacks of paralysis.


Asunto(s)
Parálisis Periódica Hipopotasémica , Masculino , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Parálisis Periódica Hipopotasémica/genética , Estudios de Seguimiento , Mutación/genética , Debilidad Muscular , Parálisis
7.
Neuromuscul Disord ; 33(7): 539-545, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37315421

RESUMEN

The three major collagen VI genes: COL6A1, COL6A2, and COL6A3 encode microfibrillar components of extracellular matrices in multiple tissues including muscles and tendons. Pathogenic variants in the collagen VI genes cause collagen VI-related dystrophies representing a continuum of conditions from Bethlem myopathy at the milder end to Ullrich congenital muscular dystrophy at the more severe end. Here we describe a pathogenic variant in the COL6A1 gene (NM_001848.3; c.1741-6G>A) found in homozygosity in three patients with Ullrich congenital muscular dystrophy. The patients suffered from severe muscle impairment characterised by proximal weakness, distal hyperlaxity, joint contractures, wheelchair-dependency, and use of nocturnal non-invasive ventilation. The pathogenicity was verified by RNA analyses showing that the variant induced aberrant splicing leading to a frameshift and loss of function. The analyses were in line with immunocytochemistry studies of patient-derived skin fibroblasts and muscle tissue demonstrating impaired secretion of collagen VI into the extracellular matrix. Thereby, we add the variant c.1741-6G>A to the list of pathogenic, recessive, splice variants in COL6A1 causing Ullrich congenital muscular dystrophy. The variant is listed in ClinVar as of "uncertain significance" and "likely benign" and may presumably have been overlooked in other patients.


Asunto(s)
Colágeno Tipo VI , Contractura , Distrofias Musculares , Humanos , Colágeno Tipo VI/genética , Contractura/genética , Contractura/patología , Músculos/patología , Distrofias Musculares/genética , Mutación
8.
JIMD Rep ; 63(6): 540-545, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36341176

RESUMEN

Deficiency of the enzyme ß-galactosidase due to variants in the GLB1-gene is associated with metabolic disorders: Morquio B and GM1-gangliosidosis. Here, we report a case compound heterozygous for variants in the GLB1-gene and a severe muscular phenotype. Full body T1-w MRI was conducted for muscular involvement. Biopsy was stained with hematoxylin and eosin for histopathological evaluation. EDTA blood-sample was subjected to whole exome sequencing. Metabolic analysis included residual enzyme activity and evaluation urinary substrate secretion. Additionally, electroneurography, echocardiography, forced volume capacity and biochemistry were evaluated. Examination showed severe proximal weakness (MRC: hip flexion 2, hip extension 2, and shoulder rotation 2), Gower's sign, no extrapyramidal symptoms and normal creatine kinase levels. MRI showed severe muscle wasting of the thigh and shoulder girdle. Muscle biopsy showed mild myopathic changes. ß-galactosidase activity was reduced to 28%-34%. Urinary glycosaminoglycan was elevated by 5.9-8.6 mg/mmol (ref.:0-5.1 mg/mmol). Electrophoresis indicated excess keratan sulfate. Exome sequencing revealed two missense variants in the GLB1 gene. Clinical features, genetic testing and laboratory findings indicate a case of ß-galactosidase-deficiency with a muscular phenotype.

9.
Hum Mutat ; 43(9): 1234-1238, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35607917

RESUMEN

Emery-Dreifuss muscular dystrophy (EDMD) is a hereditary muscle disease, characterized by the clinical triade of early-onset joint contractures, progressive muscle weakness, and cardiac involvement. Pathogenic variants in FHL1 can cause a rare X-linked recessive form of EDMD, type 6. We report three men with novel variants in FHL1 leading to EDMD6. The onset of muscle symptoms was in late adulthood and muscle weakness was not prominent in either of the patients. All patients had hypertrophic cardiomyopathy and one of them also had cardiac arrhythmias. Western blot performed on muscle biopsies from two of the patients showed no FHL1 protein expression. We predict that the variant in the third patient also leads to the absence of FHL1 protein. Complete loss of all FHL1 isoforms combined with mild muscle involvement supports the hypothesis that loss of all FHL1 isoforms is more benign than the cytotoxic effects of expressed FHL1 protein with pathogenic missense variants.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas con Dominio LIM , Proteínas Musculares , Distrofia Muscular de Emery-Dreifuss , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/genética , Masculino , Proteínas Musculares/genética , Distrofia Muscular de Emery-Dreifuss/diagnóstico , Distrofia Muscular de Emery-Dreifuss/genética , Fenotipo , Isoformas de Proteínas/genética
10.
Biomedicines ; 10(2)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35203514

RESUMEN

Muscular dystrophies constitute a broad group of genetic disorders leading to muscle wasting. We have previously demonstrated that treating a muscular atrophy mouse model with growth factors resulted in increased muscle mass. In the present study, we treated the Duchenne mouse model mdx for 12 weeks with myogenic growth factors peri- and post-onset of muscular degeneration to explore the effects in the oxidative muscle soleus and the glycolytic muscle extensor digitorum longus (EDL). We found no overall beneficial effect in the peri-onset group at the conclusion of the study. In the post-onset group, the functional improvement by means of electrophysiological examinations ex vivo was mostly confined to the soleus. EDL benefitted from the treatment on a molecular level but did not improve functionally. Histopathology revealed signs of inflammation at the end of treatment. In conclusion, the growth factor cocktail failed to improve the mdx on a functional level.

11.
Cerebellum ; 21(3): 514-519, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34318393

RESUMEN

Pathogenic variants in the SYNE1 gene are associated with a phenotypic spectrum spanning from late-onset, slowly progressive, relatively pure ataxia to early-onset, fast progressive multisystemic disease. Since its first description in 2007 as an adult-onset ataxia in French Canadian families, subsequent identification of patients worldwide has widened the clinical spectrum and increased the number of identified pathogenic variants. We report a 20-year-old Faroese female with early-onset progressive gait problems, weakness, dysphagia, slurred speech, orthostatic dizziness, and urge incontinence. Neurological examination revealed mild cognitive deficits, dysarthria, broken slow pursuit, hypometric saccades, weakness with spasticity, hyperreflexia, absent ankle reflexes, ataxia, and wide-based, spastic gait. Magnetic resonance imaging displayed atrophy of the cerebellum, brainstem, and spinal cord. Severely prolonged central motor conduction time and lower motor neuron involvement was demonstrated electrophysiologically. Fluorodeoxyglucose-positron emission tomography (FDG-PET) scan showed hypometabolism of the cerebellum and right frontal lobe. Muscle biopsy revealed chronic neurogenic changes and near-absent immunostaining for Nesprin-1. Next-generation sequencing revealed a previously undescribed homozygous truncating, likely pathogenic variant in the SYNE1 gene. The patient's mother and paternal grandfather were heterozygous carriers of the variant. Her father's genotype was unobtainable. We expand the list of likely pathogenic variants in SYNE1 ataxia with a novel homozygous truncating variant with proximity to the C-terminus and relate it to a phenotype comprising early-onset cerebellar deficits, upper and lower motor neuron involvement and cognitive deficits. Also, we report novel findings of focally reduced frontal lobe FDG-PET uptake and motor evoked potential abnormalities suggestive of central demyelination.


Asunto(s)
Ataxia Cerebelosa , Proteínas del Citoesqueleto , Canadá , Ataxia Cerebelosa/complicaciones , Ataxia Cerebelosa/diagnóstico por imagen , Ataxia Cerebelosa/genética , Proteínas del Citoesqueleto/genética , Femenino , Fluorodesoxiglucosa F18 , Humanos , Espasticidad Muscular/genética , Mutación , Proteínas del Tejido Nervioso/genética , Adulto Joven
12.
Front Physiol ; 12: 712573, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925050

RESUMEN

Introduction: The cardiac electrical conduction system is very sensitive to hypoglycemia and hypoxia, and the consequence may be brady-arrythmias. Weddell seals endure brady-arrythmias during their dives when desaturating to 3.2 kPa and elite breath-hold-divers (BHD), who share metabolic and cardiovascular adaptions including bradycardia with diving mammals, endure similar desaturation during maximum apnea. We hypothesized that hypoxia causes brady-arrythmias during maximum apnea in elite BHD. Hence, this study aimed to define the arterial blood glucose (Glu), peripheral saturation (SAT), heart rhythm (HR), and mean arterial blood pressure (MAP) of elite BHD during maximum apneas. Methods: HR was monitored with Direct-Current-Pads/ECG-lead-II and MAP and Glu from a radial arterial-catheter in nine BHD performing an immersed and head-down maximal static pool apnea after three warm-up apneas. SAT was monitored with a sensor on the neck of the subjects. On a separate day, a 12-lead-ECG-monitored maximum static apnea was repeated dry (n = 6). Results: During pool apnea of maximum duration (385 ± 70 s), SAT decreased from 99.6 ± 0.5 to 58.5 ± 5.5% (∼PaO2 4.8 ± 1.5 kPa, P < 0.001), while Glu increased from 5.8 ± 0.2 to 6.2 ± 0.2 mmol/l (P = 0.009). MAP increased from 103 ± 4 to 155 ± 6 mm Hg (P < 0.005). HR decreased to 46 ± 10 from 86 ± 14 beats/minute (P < 0.001). HR and MAP were unchanged after 3-4 min of apnea. During dry apnea (378 ± 31 s), HR decreased from 55 ± 4 to 40 ± 3 beats/minute (P = 0.031). Atrioventricular dissociation and junctional rhythm were observed both during pool and dry apneas. Conclusion: Our findings contrast with previous studies concluding that Glu decreases during apnea diving. We conclude during maximum apnea in elite BHD that (1) the diving reflex is maximized after 3-4 min, (2) increasing Glu may indicate lactate metabolism in accordance with our previous results, and (3) extreme hypoxia rather than hypoglycemia causes brady-arrythmias in elite BHD similar to diving mammals.

13.
Muscle Nerve ; 64(6): 743-748, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34550615

RESUMEN

INTRODUCTION/AIMS: Mutations in the anoctamin 5 (ANO5) gene are a common cause of muscular dystrophy. We aimed to investigate whether inflammatory changes in muscle are present in patients with ANO5 myopathy when assessed by muscle biopsy and muscle magnetic resonance imaging (MRI). METHODS: Adults with pathogenic variations in ANO5 known to cause muscular dystrophy were included in our study. Muscle biopsies of pelvic and lower extremity muscles were reviewed retrospectively. Muscle MR short-tau inversion recovery (STIR) images of a subset of these patients were obtained prospectively. RESULTS: Muscle biopsies from 24 patients were reviewed. MR STIR images were performed in 17 of these patients. We found inflammatory changes in muscle biopsies of three patients and MRI revealed hyperintense signals on STIR images in 14 of 17 patients. DISCUSSION: In this study, we found that muscle edema is very common in patients with ANO5 myopathy and that some patients have inflammatory changes in muscle biopsies. Further studies are needed to determine whether the STIR+ lesions reflect inflammation.


Asunto(s)
Anoctaminas , Enfermedades Musculares , Adulto , Anoctaminas/genética , Biopsia , Humanos , Imagen por Resonancia Magnética , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Músculos , Enfermedades Musculares/diagnóstico por imagen , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Mutación/genética , Estudios Retrospectivos
14.
Mol Metab ; 53: 101271, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34119711

RESUMEN

OBJECTIVE: NAD+ is a co-factor and substrate for enzymes maintaining energy homeostasis. Nicotinamide phosphoribosyltransferase (NAMPT) controls NAD+ synthesis, and in skeletal muscle, NAD+ is essential for muscle integrity. However, the underlying molecular mechanisms by which NAD+ synthesis affects muscle health remain poorly understood. Thus, the objective of the current study was to delineate the role of NAMPT-mediated NAD+ biosynthesis in skeletal muscle development and function. METHODS: To determine the role of Nampt in muscle development and function, we generated skeletal muscle-specific Nampt KO (SMNKO) mice. We performed a comprehensive phenotypic characterization of the SMNKO mice, including metabolic measurements, histological examinations, and RNA sequencing analyses of skeletal muscle from SMNKO mice and WT littermates. RESULTS: SMNKO mice were smaller, with phenotypic changes in skeletal muscle, including reduced fiber area and increased number of centralized nuclei. The majority of SMNKO mice died prematurely. Transcriptomic analysis identified that the gene encoding the mitochondrial permeability transition pore (mPTP) regulator Cyclophilin D (Ppif) was upregulated in skeletal muscle of SMNKO mice from 2 weeks of age, with associated increased sensitivity of mitochondria to the Ca2+-stimulated mPTP opening. Treatment of SMNKO mice with the Cyclophilin D inhibitor, Cyclosporine A, increased membrane integrity, decreased the number of centralized nuclei, and increased survival. CONCLUSIONS: Our study demonstrates that NAMPT is crucial for maintaining cellular Ca2+ homeostasis and skeletal muscle development, which is vital for juvenile survival.


Asunto(s)
Calcio/metabolismo , Citocinas/metabolismo , Homeostasis , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Desarrollo de Músculos
15.
Hum Mutat ; 42(9): 1101-1106, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34167170

RESUMEN

T1-weighted, cross-sectional MR images showing shoulder girdle, abdominal, paraspinal, gluteal and thigh muscles almost completely replaced by fat, whereas lower leg muscles are almost unaffected i a patient who is compound heterozygous for pathogenic variants in GOSR2.


Asunto(s)
Enfermedades Musculares , Proteínas Qb-SNARE , Estudios Transversales , Humanos , Músculo Esquelético , Enfermedades Musculares/genética , Fenotipo , Proteínas Qb-SNARE/genética
16.
Acta Neuropathol Commun ; 9(1): 109, 2021 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-34120654

RESUMEN

Hypokalemic periodic paralysis is an autosomal dominant, rare disorder caused by variants in the genes for voltage-gated calcium channel CaV1.1 (CACNA1S) and NaV1.4 (SCN4A). Patients with hypokalemic periodic paralysis may suffer from periodic paralysis alone, periodic paralysis co-existing with permanent weakness or permanent weakness alone. Hypokalemic periodic paralysis has been known to be associated with vacuolar myopathy for decades, and that vacuoles are a universal feature regardless of phenotype. Hence, we wanted to investigate the nature and cause of the vacuoles. Fourteen patients with the p.R528H variation in the CACNA1S gene was included in the study. Histology, immunohistochemistry and transmission electron microscopy was used to assess general histopathology, ultrastructure and pattern of expression of proteins related to muscle fibres and autophagy. Western blotting and real-time PCR was used to determine the expression levels of proteins and mRNA of the proteins investigated in immunohistochemistry. Histology and transmission electron microscopy revealed heterogenous vacuoles containing glycogen, fibrils and autophagosomes. Immunohistochemistry demonstrated autophagosomes and endosomes arrested at the pre-lysosome fusion stage. Expression analysis showed a significant decrease in levels of proteins an mRNA involved in autophagy in patients, suggesting a systemic effect. However, activation level of the master regulator of autophagy gene transcription, TFEB, did not differ between patients and controls, suggesting competing control over autophagy gene transcription by nutritional status and calcium concentration, both controlling TFEB activity. The findings suggest that patients with hypokalemic periodic paralysis have disrupted autophagic processing that contribute to the vacuoles seen in these patients.


Asunto(s)
Autofagia/genética , Parálisis Periódica Hipopotasémica/patología , Enfermedades por Almacenamiento Lisosomal/patología , Enfermedades Musculares/patología , Adulto , Anciano , Canales de Calcio Tipo L/genética , Femenino , Humanos , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/metabolismo , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/metabolismo , Masculino , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo
17.
J Inherit Metab Dis ; 44(5): 1186-1198, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33934389

RESUMEN

Mitochondrial myopathies (MM) are caused by mutations that typically affect genes involved in oxidative phosphorylation. Main symptoms are exercise intolerance and fatigue. Currently, there is no specific treatment for MM. Resveratrol (RSV) is a nutritional supplement that in preclinical studies has been shown to stimulate mitochondrial function. We hypothesized that RSV could improve exercise capacity in patients with MM. The study design was randomized, double-blind, cross-over and placebo-controlled. Eleven patients with genetically verified MM were randomized to receive either 1000 mg/day RSV or placebo (P) for 8 weeks followed by a 4-week washout and then the opposite treatment. Primary outcomes were changes in heart rate (HR) during submaximal cycling exercise and peak oxygen utilization (VO2 max) during maximal exercise. Secondary outcomes included reduction in perceived exertion, changes in lactate concentrations, self-rated function (SF-36) and fatigue scores (FSS), activities of electron transport chain complexes I and IV in mononuclear cells and mitochondrial biomarkers in muscle tissue among others. There were no significant differences in primary and secondary outcomes between treatments. Mean HR changes were -0.3 ± 4.3 (RSV) vs 1.8 ± 5.0 bpm (P), P = .241. Mean VO2 max changes were 0.7 ± 1.4 (RSV) vs -0.2 ± 2.3 mL/min/kg (P), P = .203. The study provides evidence that 1000 mg RSV daily is ineffective in improving exercise capacity in adults with MM. These findings indicate that previous in vitro studies suggesting a therapeutic potential for RSV in MM, do not translate into clinically meaningful effects in vivo.


Asunto(s)
Miopatías Mitocondriales/tratamiento farmacológico , Resveratrol/uso terapéutico , Adulto , Anciano , Estudios Cruzados , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resveratrol/farmacología
18.
Cells ; 10(3)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802348

RESUMEN

In the past 20 years, myostatin, a negative regulator of muscle mass, has attracted attention as a potential therapeutic target in muscular dystrophies and other conditions. Preclinical studies have shown potential for increasing muscular mass and ameliorating the pathological features of dystrophic muscle by the inhibition of myostatin in various ways. However, hardly any clinical trials have proven to translate the promising results from the animal models into patient populations. We present the background for myostatin regulation, clinical and preclinical results and discuss why translation from animal models to patients is difficult. Based on this, we put the clinical relevance of future antimyostatin treatment into perspective.


Asunto(s)
Distrofias Musculares/genética , Miostatina/antagonistas & inhibidores , Animales , Humanos , Ratones , Enfermedades Musculares/genética
19.
Genes (Basel) ; 13(1)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-35052414

RESUMEN

McArdle disease is an autosomal recessive disorder of muscle glycogen metabolism caused by pathogenic mutations in the PYGM gene, which encodes the skeletal muscle-specific isoform of glycogen phosphorylase. Clinical symptoms are mainly characterized by transient acute "crises" of early fatigue, myalgia and contractures, which can be accompanied by rhabdomyolysis. Owing to the difficulty of performing mechanistic studies in patients that often rely on invasive techniques, preclinical models have been used for decades, thereby contributing to gain insight into the pathophysiology and pathobiology of human diseases. In the present work, we describe the existing in vitro and in vivo preclinical models for McArdle disease and review the insights these models have provided. In addition, despite presenting some differences with the typical patient's phenotype, these models allow for a deep study of the different features of the disease while representing a necessary preclinical step to assess the efficacy and safety of possible treatments before they are tested in patients.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad del Almacenamiento de Glucógeno Tipo V/patología , Enfermedad del Almacenamiento de Glucógeno Tipo V/terapia , Músculo Esquelético/patología , Animales , Humanos
20.
Nucleic Acid Ther ; 31(3): 208-219, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32678992

RESUMEN

Antisense-mediated exon skipping constitutes a promising new modality for treatment of Duchenne Muscular Dystrophy (DMD), which is caused by gene mutations that typically introduce a translation stop codon in the dystrophin gene, thereby abolishing production of functional dystrophin protein. The exon removal can restore translation to produce a shortened, but still partially functional dystrophin protein. Peptide nucleic acid (PNA) as a potential antisense drug has previously been shown to restore the expression of functional dystrophin by splice modulation in the mdx mouse model of DMD. In this study, we compare systemic administration of a 20-mer splice switching antisense PNA oligomer through intravenous (i.v.) and subcutaneous (s.c.) routes in the mdx mice. Furthermore, the effect of in situ forming depot technology (BEPO®) and PNA-oligonucleotide formulation was studied. In vivo fluorescence imaging analysis showed fast renal/bladder excretion of the PNA (t½ ∼ 20 min) for i.v. administration, while s.c. administration showed a two to three times slower excretion. The release from the BEPO depot exhibited biphasic kinetics with a slow release (t½ ∼ 10 days) of 50% of the dose. In all cases, some accumulation in kidneys and liver could be detected. Formulation of PNA as a duplex hybridization complex with a complementary phosphorothioate oligonucleotide increased the solubility of the PNA. However, none of these alternative administration methods resulted in significantly improved antisense activity. Therefore, either more sophisticated formulations such as designed nanoparticles or conjugation to delivery ligands must be utilized to improve both pharmacokinetics as well as tissue targeting and availability. On the other hand, the results show that s.c. and BEPO depot administration of PNA are feasible and allow easier, higher, and less frequent dosing, as well as more controlled release, which can be exploited both for animal model studies as well as eventually in the clinic in terms of dosing optimization.


Asunto(s)
Distrofia Muscular de Duchenne , Ácidos Nucleicos de Péptidos , Animales , Distrofina/genética , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Oligonucleótidos Antisentido/genética , Ácidos Nucleicos de Péptidos/genética , Oligonucleótidos Fosforotioatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA