Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38539427

RESUMEN

Chalcones are a type of natural flavonoid compound that have been found to possess promising anticancer properties. Studies have shown that chalcones can inhibit the growth and proliferation of cancer cells, induce apoptosis, and suppress tumor angiogenesis. In addition to their potential therapeutic applications, chalcones have also been studied for their chemopreventive effects, which involve reducing the risk of cancer development in healthy individuals. Overall, the anticancer properties of chalcones make them a promising area of research for developing new cancer treatments and preventative strategies. This review aims to provide a thorough overview of the central studies reported in the literature concerning cancer prevention and the treatment of chalcones. Although chalcones target many different mechanisms, the STAT and NF-κB signaling pathways are the ones this review will focus on, highlighting the existing crosstalk between these two pathways and considering the potential therapeutic opportunities for chalcone combinations.

2.
Antioxidants (Basel) ; 12(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38136172

RESUMEN

The development and progression of cancer are associated with the dysregulation of multiple pathways involved in cell proliferation and survival, as well as dysfunction in redox balance, immune response, and inflammation. The master antioxidant pathway, known as the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, regulates the cellular defense against oxidative stress and inflammation, making it a promising cancer prevention and treatment target. Cannabinoids have demonstrated anti-tumor and anti-inflammatory properties, affecting signaling pathways, including Nrf2. Increased oxidative stress following exposure to anti-cancer therapy prompts cancer cells to activate antioxidant mechanisms. This indicates the dual effect of Nrf2 in cancer cells-influencing proliferation and apoptotic processes and protecting against the toxicity of anti-cancer therapy. Therefore, understanding the complex role of cannabinoids in modulating Nrf2 might shed light on its potential implementation as an anti-cancer support. In this review, we aim to highlight the impact of cannabinoids on Nrf2-related factors, with a focus on cancer prevention and treatment. Additionally, we have presented the results of several research studies that combined cannabidiol (CBD) with other compounds targeting Nrf2. Further studies should be directed toward exploring the anti-inflammatory effects of cannabinoids in the context of cancer prevention and therapy.

3.
Curr Issues Mol Biol ; 45(12): 9579-9592, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38132445

RESUMEN

The dysregulation of energetic metabolism is one of the hallmarks of cancer cells. Indeed, the growth of head and neck squamous cell carcinoma (HNSCC) cells depends heavily on glycolytic activity, which can be considered a potential therapeutic target. Wnt signaling is one of the pathways that undergoes upregulation in HNSCC. Our previous studies have shown that Wnt signaling inhibitors-PRI-724 and IWP-O1-attenuate tongue SCC survival and reduce glucose uptake and lactate release. The aim of this research was to further evaluate the possible mechanisms of the previously observed effects. We assessed the effect of PRI-724 and IWP-O1 on the expression of selected glycolytic enzymes: phosphofructokinase M, pyruvate kinase M2, and lactate dehydrogenase. Relative transcript expression was assessed by real-time PCR, and protein levels by Western blot. Moreover, clinical data concerning mRNA and protein expression, gene promoter methylation, and HNSCC patients' survival time were analyzed by the UALCAN tool, and protein-protein interaction was assessed using the STRING database. Experimental and bioinformatic data confirmed the relation between Wnt signaling and glycolytic enzymes in tongue cancer cells and HNSCC clinical samples. Overall, the inhibition of glucose metabolism by Wnt signaling inhibitors is a promising mode of action against tongue cancer cells.

4.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37765070

RESUMEN

Intestinal failure-associated liver disease (IFALD) is a severe liver injury occurring due to factors related to intestinal failure and parenteral nutrition administration. Different approaches are studied to reduce the risk or ameliorate the course of IFALD, including providing omega-3 fatty acids instead of soybean oil-based lipid emulsion or administering active compounds that exert a hepatoprotective effect. This study aimed to develop, optimize, and characterize magnolol-loaded intravenous lipid emulsion for parenteral nutrition. The preformulation studies allowed for chosen oils mixture of the highest capacity of magnolol solubilization. Then, magnolol-loaded SMOFlipid was developed using the passive incorporation method. The Box-Behnken design and response surface methodology were used to optimize the entrapment efficiency. The optimal formulation was subjected to short-term stress tests, and its effect on normal human liver cells and erythrocytes was determined using the MTT and hemolysis tests, respectively. The optimized magnolol-loaded SMOFlipid was characterized by the mean droplet diameter of 327.6 ± 2.9 nm with a polydispersity index of 0.12 ± 0.02 and zeta potential of -32.8 ± 1.2 mV. The entrapment efficiency of magnolol was above 98%, and pH and osmolality were sufficient for intravenous administration. The magnolol-loaded SMOFlipid samples showed a significantly lower toxic effect than bare SMOFlipid in the same concentration on THLE-2 cells, and revealed an acceptable hemolytic effect of 8.3%. The developed formulation was characterized by satisfactory stability. The in vitro studies showed the reduced cytotoxic effect of MAG-SMOF applied in high concentrations compared to bare SMOFlipid and the non-hemolytic effect on human blood cells. The magnolol-loaded SMOFlipid is promising for further development of hepatoprotective lipid emulsion for parenteral nutrition.

5.
Pharmaceutics ; 15(8)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37631318

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most frequently occurring primary malignant central nervous system tumor, with a poor prognosis and median survival below two years. Administration of a combination of non-steroidal anti-inflammatory drugs and natural compounds that exhibit a curative or prophylactic effect in cancer is a new approach to GBM treatment. This study aimed to investigate the synergistic antitumor activity of etoricoxib (ETO) and cannabidiol (CBD) in a GBM cell line model, and to develop poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) for these two substances. METHODS: The activity of ETO+CBD was determined using the MTT test, cell-cycle distribution assay, and apoptosis analysis using two GBM cell lines, namely, T98G and U-138 MG. The PLGA-based NPs were developed using the emulsification and solvent evaporation method. Their physicochemical properties, such as shape, size, entrapment efficiency (EE%), in vitro drug release, and quality attributes, were determined using scanning electron microscopy, diffraction light scattering, high-performance liquid chromatography, infrared spectroscopy, and differential scanning calorimetry. RESULTS: The combination of ETO and CBD reduced the viability of cells in a dose-dependent manner and induced apoptosis in both tested GBM cell lines. The developed method allowed for the preparation of ETO+CBD-NPs with a spherical shape, mean particle size (MPS) below 400 nm, zeta potential (ZP) values from -11 to -17.4 mV, polydispersity index (PDI) values in the range from 0.029 to 0.256, and sufficient EE% of both drugs (78.43% for CBD, 10.94% for ETO). CONCLUSIONS: The combination of ETO and CBD is a promising adjuvant therapeutic in the treatment of GBM, and the prepared ETO+CBD-NPs exhibit a high potential for further pharmaceutical formulation development.

6.
Molecules ; 28(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37570726

RESUMEN

HCC is a highly aggressive malignancy with limited treatment options. In this study, novel conjugates of non-steroidal anti-inflammatory drugs (NSAIDs)-Ibuprofen and Ketoprofen-with oleanolic acid oximes derivatives (OAO) were synthesized, and their activity as modulators of signaling pathways involved in HCC pathogenesis was evaluated in normal THLE-2 liver cells, and HCC-derived HepG2 cells. The results demonstrated that conjugation with OAO derivatives reduces the cytotoxicity of parent compounds in both cell lines. In THLE-2 cells, treatment with conjugates resulted in increased activation of the Nrf2-ARE pathway. An opposite effect was observed in HepG2 cells. In the later reduction of NF-κB, it was observed along with modulation of MAPK signaling pathways (AKT, ERK, p38, p70S6K, and JNK). Moreover, STAT3, STAT5, and CREB transcription factors on protein levels were significantly reduced as a result of treatment with IBU- and KET-OAO derivatives conjugates. The most active were conjugates with OAO-morpholide. Overall, the findings of this study demonstrate that IBU-OAO and KET-OAO derivative conjugates modulate the key signaling pathways involved in hepatic cancer development. Their effect on specific signaling pathways varied depending on the structure of the conjugate. Since the conjugation of IBU and KET with OAO derivatives reduced their cytotoxicity, the conjugates may be considered good candidates for the prevention of liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Antiinflamatorios no Esteroideos/farmacología , Transducción de Señal , Línea Celular
7.
Aging Cell ; 22(6): e13845, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37042069

RESUMEN

Despite the growing interest by researchers into cellular senescence, a hallmark of cellular aging, its role in human skin remains equivocal. The skin is the largest and most accessible human organ, reacting to the external and internal environment. Hence, it is an organ of choice to investigate cellular senescence and to target root-cause aging processes using senolytic and senomorphic agents, including naturally occurring plant-based derivatives. This review presents different aspects of skin cellular senescence, from physiology to pathology and signaling pathways. Cellular senescence can have both beneficial and detrimental effects on the skin, indicating that both prosenescent and antisenescent therapies may be desirable, based on the context. Knowledge of molecular mechanisms involved in skin cellular senescence may provide meaningful insights for developing effective therapeutics for senescence-related skin disorders, such as wound healing and cosmetic skin aging changes.


Asunto(s)
Senescencia Celular , Envejecimiento de la Piel , Humanos , Senescencia Celular/fisiología , Transducción de Señal
8.
Pharmaceutics ; 15(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36839769

RESUMEN

BACKGROUND: Glioblastoma (GBM) is an extremely invasive and heterogenous malignant brain tumor. Despite advances in current anticancer therapy, treatment options for glioblastoma remain limited, and tumor recurrence is inevitable. Therefore, alternative therapies or new active compounds that can be used as adjuvant therapy are needed. This study aimed to develop, optimize, and characterize honokiol-loaded nanoemulsions intended for intravenous administration in glioblastoma therapy. METHODS: Honokiol-loaded nanoemulsion was developed by incorporating honokiol into Lipofundin MCT/LCT 20% using a horizontal shaker. The Box-Behnken design, coupled with response surface methodology, was used to optimize the incorporation process. The effect of the developed formulation on glioblastoma cell viability was determined using the MTT test. Long-term and short-term stress tests were performed to evaluate the effect of honokiol on the stability of the oil-in-water system and the effect of different stress factors on the stability of honokiol, respectively. Its physicochemical properties, such as MDD, PDI, ZP, OSM, pH, and loading efficiency (LE%), were determined. RESULTS: The optimized honokiol-loaded nanoemulsion was characterized by an MDD of 201.4 (0.7) nm with a PDI of 0.07 (0.02) and a ZP of -28.5 (0.9) mV. The LE% of honokiol was above 95%, and pH and OSM were sufficient for intravenous administration. The developed formulation was characterized by good stability and a satisfactory toxicity effect of the glioblastoma cell lines. CONCLUSIONS: The honokiol-loaded nanoemulsion is a promising pharmaceutical formulation for further development in the adjuvant therapy of glioblastoma.

9.
Molecules ; 27(24)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36557911

RESUMEN

Vulvar squamous cell carcinoma (VSCC) is a rare malignancy with a relatively good prognosis. However, the prognosis remains poor for elderly patients and those with a significant depth of tumor invasion; thus, novel treatment modalities are needed. The aim of this study was to analyze the impact of cannabidiol (CBD) and its combination with NSAIDs, diclofenac (DIC) and ibuprofen (IBU) on VSCC cells. In this regard, the MTT test was applied for cytotoxicity analysis. Moreover, the influence of CBD, DIC and IBU, as well as their combinations, on apoptosis and cell cycle distribution were analyzed by flow cytometry. The mechanisms of action of the analyzed compounds, including their impact on NF-κB signaling, p53 and COX-2 expression were evaluated using Western blot. This study shows that CBD and its combinations with NSAIDs are cytotoxic to A431 cells, but they also reduce, in a dose-dependent manner, the viability of immortalized keratinocyte HaCaT cells, and human umbilical vein cell line, EA.hy926. Moreover, the compounds and their combinations induced apoptosis, diminished the NF-κB signaling activation and reduced COX-2 expression. We conclude that CBD and its combination with DIC or IBU are promising candidates for the adjuvant treatment of high-risk VSCC patients. However, their impact on non-cancerous cells requires careful evaluation.


Asunto(s)
Cannabidiol , Carcinoma de Células Escamosas , Humanos , Anciano , FN-kappa B/metabolismo , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Ciclooxigenasa 2 , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Apoptosis , Ibuprofeno/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral
10.
Cancers (Basel) ; 14(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36551708

RESUMEN

Glioblastoma (GBM) is the most common malignant neoplasm in adults among all CNS gliomas, with the 5-year survival rate being as low as 5%. Among nanocarriers, liposomal nanoformulations are considered as a promising tool for precise drug delivery. The herein presented study demonstrates the possibility of encapsulating four selected natural compounds (curcumin, bisdemethoxycurcumin, acteoside, and orientin) and their mixtures in cationic liposomal nanoformulation composed of two lipid types (DOTAP:POPC). In order to determine the physicochemical properties of the new drug carriers, specific measurements, including particle size, Zeta Potential, and PDI index, were applied. In addition, NMR and EPR studies were carried out for a more in-depth characterization of nanoparticles. Within biological research, the prepared formulations were evaluated on T98G and U-138 MG glioblastoma cell lines in vitro, as well as on a non-cancerous human lung fibroblast cell line (MRC-5) using the MTT test to determine their potential as anticancer agents. The highest activity was exhibited by liposome-entrapped acteoside towards the T98G cell line with IC50 equal 2.9 ± 0.9 µM after 24 hours of incubation. Noteworthy, curcumin and orientin mixture in liposomal formulation exhibited a synergistic effect against GBM. Moreover, the impact on the expression of apoptosis-associated proteins (p53 and Caspase-3) of acteoside as well as curcumin and orientin mixture, as the most potent agents, was assessed, showing nearly 40% increase as compared to control U-138 MG and T98G cells. It should be emphasized that a new and alternative method of extrusion of the studied liposomes was developed.

11.
Sci Rep ; 12(1): 14915, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050500

RESUMEN

This study aimed to synthesize new thioderivative chalcones and analyze their impact on the NF-κB, STAT3, EGFR and Nrf2 signaling pathways in colorectal cancer cells. Among the studied compounds, derivatives 4 and 5 decreased the activation of NF-κB and the expression of the target gene COX-2. In the case of STAT3, we observed the inhibition of activation of this signaling pathway after influencing derivative 4. Increased activation of the Nrf2 signaling pathway was demonstrated for derivatives 5 and 7 in DLD-1 and HCT116 cells. The results of this study indicated that new chalcone derivatives, especially compounds 4, 5, and-to some degree-7, possess potential applications in the prevention of colorectal cancer.


Asunto(s)
Chalcona , Chalconas , Neoplasias Colorrectales , Transducción de Señal , Humanos , Chalcona/química , Chalconas/química , Chalconas/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT3/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo
12.
Cells ; 11(7)2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35406647

RESUMEN

Lichens are a source of secondary metabolites with significant pharmacological potential. Data regarding their possible application in glioblastoma (GBM) treatment are, however, scarce. The study aimed at analyzing the mechanism of action of six lichen secondary metabolites: atranorin, caperatic acid, physodic acid, squamatic acid, salazinic acid, and lecanoric acid using two- and three-dimensional GBM cell line models. The parallel artificial membrane permeation assay was used to predict the blood-brain barrier penetration ability of the tested compounds. Their cytotoxicity was analyzed using the MTT test on A-172, T98G, and U-138 MG cells. Flow cytometry was applied to the analysis of oxidative stress, cell cycle distribution, and apoptosis, whereas qPCR and microarrays detected the induced transcriptomic changes. Our data confirm the ability of lichen secondary metabolites to cross the blood-brain barrier and exert cytotoxicity against GBM cells. Moreover, the compounds generated oxidative stress, interfered with the cell cycle, and induced apoptosis in T98G cells. They also inhibited the Wnt/ß-catenin pathway, and this effect was even stronger in case of a co-treatment with temozolomide. Transcriptomic changes in cancer related genes induced by caperatic acid and temozolomide were the most pronounced. Lichen secondary metabolites, caperatic acid in particular, should be further analyzed as potential anti-GBM agents.


Asunto(s)
Glioblastoma , Líquenes , Temozolomida , Vía de Señalización Wnt , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Humanos , Líquenes/química , Temozolomida/farmacología , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo
13.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35163154

RESUMEN

Our earlier studies showed that coupling nonsteroidal anti-inflammatory drugs (NSAIDs) with oleanolic acid derivatives increased their anti-inflammatory activity in human hepatoma cells. The aim of this study was to evaluate their effect on the signaling pathways involved in inflammation processes in human pancreatic cancer (PC) cells. Cultured PSN-1 cells were exposed for 24 h (30 µM) to OA oxime (OAO) derivatives substituted with benzyl or morpholide groups and their conjugates with indomethacin (IND) or diclofenac (DCL). The activation of NF-κB and Nrf2 was assessed by the evaluation of the translocation of their active forms into the nucleus and their binding to specific DNA sequences via the ELISA assay. The expression of NF-κB and Nrf2 target genes was evaluated by R-T PCR and Western blot analysis. The conjugation of IND or DCL with OAO derivatives increased cytotoxicity and their effect on the tested signaling pathways. The most effective compound was the DCL hybrid with OAO morpholide (4d). This compound significantly reduced the activation and expression of NF-κB and enhanced the activation and expression of Nrf2. Increased expression of Nrf2 target genes led to reduced ROS production. Moreover, MAPKs and the related pathways were also affected. Therefore, conjugate 4d deserves more comprehensive studies as a potential PC therapeutic agent.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Diclofenaco/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Indometacina/farmacología , Ácido Oleanólico/química , Oximas/química , Neoplasias Pancreáticas/tratamiento farmacológico , Apoptosis , Biomarcadores de Tumor/genética , Ciclo Celular , Proliferación Celular , Inhibidores de la Ciclooxigenasa/química , Inhibidores de la Ciclooxigenasa/farmacología , Diclofenaco/química , Humanos , Indometacina/química , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Células Tumorales Cultivadas
14.
Nutr Cancer ; 74(3): 996-1011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34120541

RESUMEN

Cancer prevention particularly related to aging can be improved by the use of phytochemicals combinations. In this study, we evaluated the effect of phenethyl isothiocyanate (PEITC), xanthohumol (XAN), indole-3-carbinol (I3C), and resveratrol (RES) and their combinations on the Nrf2 signaling pathway. Human pancreatic cancer cells MIA-Pa-Ca-2 were treated with the phytochemicals alone or their equimolar mixture for 24 h and activation of Nrf2 and expression of its target genes were evaluated. Phytochemicals alone enhanced Nrf2 activation and expression, but their combinations were more efficient. The mixture of XAN and PEITC was found to be the most potent modulator of the Nrf2 pathway. Moreover, increased levels of P-Nrf2 and P-JNK and decreased level of P-GSK-3ß suggested possible activation of Nrf2 through modulation of these kinases. The combinations of XAN with PEITC and RES with PEITC increased mostly the expression of SOD, GSTP, CAT, and GPx. XAN and PEITC mixture induced the cell cycle arrest in G0/G1 phase and increased apoptotic and autophagy markers. These results indicate that combinations of phytochemicals resembling that occurring in natural diets may efficiently modulate the signaling pathways, which proper function is important for pancreatic cancer prophylaxis or improving the results of conventional therapy.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Neoplasias Pancreáticas , Antioxidantes/metabolismo , Antioxidantes/farmacología , Glucógeno Sintasa Quinasa 3 beta , Humanos , Isotiocianatos/farmacología , Factor 2 Relacionado con NF-E2/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Fitoquímicos/farmacología , Resveratrol/farmacología , Neoplasias Pancreáticas
15.
Cells ; 10(12)2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34944062

RESUMEN

Pancreatic cancer is a disease in which deregulation of signaling pathways plays a key role, thus searching for their novel modulators is a promising therapeutic strategy. Hence, in this study, the effect of phytochemical combinations on the canonical and non-canonical activation of Nrf2 and its interaction with the NF-κB pathway was evaluated in extensively proliferating pancreatic cancer cell line, PSN-1, in comparison to non-cancerous MS1 cells. The activation of Nrf2 and NF-κB, expression of their target genes, and effect on cell survival were assessed in PSN-1 cells. The tumor burden was evaluated in mice carrying xenografts. PSN-1 cells were more sensitive to the tested compounds as compared to the MS1 cell line. Combination of xanthohumol and phenethyl isothiocyanate was more effective than single compounds at decreasing the canonical and non-canonical activation of Nrf2 in PSN-1 cancer cells. Decreased activation of NF-κB, and subsequent reduced cytosolic COX-2 and nuclear STAT3 level indicated their anti-inflammatory and pro-apoptotic activities. In vivo studies showed the partial response in groups treated with xanthohumol or the combination of xanthohumol and phenethyl isothiocyanate. Overall, these results suggest that the combination of xanthohumol and phenethyl isothiocyanate may be a promising therapeutic candidate against pancreatic cancer.


Asunto(s)
Ciclooxigenasa 2/genética , Factor 2 Relacionado con NF-E2/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Factor de Transcripción STAT3/genética , Animales , Apoptosis/efectos de los fármacos , Productos Biológicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Flavonoides/farmacología , Humanos , Isotiocianatos/farmacología , Ratones , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , FN-kappa B/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fitoquímicos/farmacología , Propiofenonas/farmacología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Nutrients ; 13(9)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34578877

RESUMEN

Background: Increasing evidence suggests that combinations of phytochemicals are more efficient than single components in the modulation of signaling pathways involved in cancer development. In this study, the impact of phenethyl isothiocyanate (PEITC), indole-3-carbinol (I3C), xanthohumol, (X), and resveratrol (RES) and their combinations on the activation and expression of Nrf2 and NF-κB in human hepatocytes and HCC cells were evaluated. Methods: THLE-2 and HepG2 cells were exposed to single phytochemicals and their combinations for 24 h. The activation of Nrf2 and NF-κB, expression of their target genes, and effect on cells survival were assessed. The tumor burden was evaluated in mice carrying xenografts. Results: All phytochemicals enhanced the activation and expression of Nrf2 and its target genes SOD and NQO1 in HepG2 cells. The increased expression of NQO1 (~90%) was associated with increased ROS generation. X + PEITC downregulated NF-κB activation reducing binding of its active subunits to DNA resulting in diminished COX-2 expression. In contrast to single phytochemicals, X + PEITC induced apoptosis. Moderate reduction of tumor burden in mice carrying xenografts following X and PEITC or their combination was observed. Conclusions: Since Nrf2 is overexpressed in HCC its reduced activation together with diminished level of NF-κB by X + PEITC may be considered as a strategy to support conventional HCC therapy.


Asunto(s)
Anticarcinógenos/farmacología , Flavonoides/farmacología , Hepatoblastoma/metabolismo , Isotiocianatos/farmacología , Neoplasias Hepáticas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Propiofenonas/farmacología , Animales , Anticarcinógenos/uso terapéutico , Apoptosis , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Regulación hacia Abajo , Combinación de Medicamentos , Flavonoides/uso terapéutico , Células Hep G2 , Hepatoblastoma/tratamiento farmacológico , Humanos , Isotiocianatos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Propiofenonas/uso terapéutico , Transducción de Señal , Superóxido Dismutasa/metabolismo , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34358114

RESUMEN

Combining NSAIDs with conventional therapeutics was recently explored as a new strategy in cancer therapy. Our earlier studies showed that novel oleanolic acid oximes (OAO) conjugated with aspirin or indomethacin may enhance their anti-cancer potential through modulation of the Nrf2 and NF-κB signaling pathways. This study focused on the synthesis and biological evaluation of four diclofenac (DCL)-OAO derivative conjugates in the context of these pathways' modification and hepatic cells survival. Treatment with the conjugates 4d, 3-diclofenacoxyiminoolean-12-en-28-oic acid morpholide, and 4c, 3-diclofenacoxyiminoolean-12-en-28-oic acid benzyl ester significantly reduced cell viability in comparison to the DCL alone. In THLE-2, immortalized normal hepatocytes treated with these conjugates resulted in the activation of Nrf2 and increased expression in SOD-1 and NQO1, while the opposite effect was observed in the HepG2 hepatoma cells. In both cell lines, reduced activation of the NF-κB and COX-2 expression was observed. In HepG2 cells, conjugates increased ROS production resulting from a reduced antioxidant defense, induced apoptosis, and inhibited cell proliferation. In addition, the OAO morpholide derivative and its DCL hybrid reduced the tumor volume in mice bearing xenografts. In conclusion, our study demonstrated that conjugating diclofenac with the OAO morpholide and a benzyl ester might enhance its anti-cancer activity in HCC.

18.
Eur J Pharm Sci ; 166: 105961, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34363938

RESUMEN

Novel therapeutics are required to improve treatment outcomes in head and neck squamous cell carcinoma (HNSCC) patients. Histone lysine demethylases (KDM) have emerged recently as new potential drug targets for HNSCC therapy. They might also potentiate the action of the inhibitors of EGFR and PI3K signaling pathways. This study aimed at evaluating the anti-cancer effects of KDM4 (ML324) and KDM6 (GSK-J4) inhibitors and their combinations with EGFR (erlotinib) and PI3K (HS-173) inhibitors in HNSCC cells. The effect of the inhibitors on the viability of CAL27 and FaDu cells was evaluated using resazurin assay. The effect of the chemicals on cell cycle and apoptosis was assessed using propidium iodide and Annexin V staining, respectively. The effect of the compounds on gene expression was determined using qPCR and Western blot. The changes in cell cycle distribution upon treatment with the compounds were small to moderate, with the exception of erlotinib, which induced G1 arrest. However, all the compounds and their combinations induced apoptosis in both cell lines. These effects were associated with changes in the level of expression of CDKN1A, CCND1 and BIRC5. The inhibition of KDM4 and KDM6 using ML324 and GSK-J4, respectively, can be regarded as a novel therapeutic strategy in HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Histona Demetilasas , Apoptosis , Línea Celular Tumoral , Clorhidrato de Erlotinib/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Fosfatidilinositol 3-Quinasas , Piridinas , Sulfonamidas
19.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34360990

RESUMEN

Nrf2 (nuclear factor erythroid 2-related factor 2) and NF-κB (nuclear factor-kappa B) signaling pathways play a central role in suppressing or inducing inflammation and angiogenesis processes. Therefore, they are involved in many steps of carcinogenesis through cooperation with multiple signaling molecules and pathways. Targeting both transcription factors simultaneously may be considered an equally important strategy for cancer chemoprevention and therapy. Several hundreds of phytochemicals, mainly edible plant and vegetable components, were shown to activate Nrf2 and mediate antioxidant response. A similar number of phytochemicals was revealed to affect NF-κB. While activation of Nrf2 and inhibition of NF-κB may protect normal cells against cancer initiation and promotion, enhanced expression and activation in cancer cells may lead to resistance to conventional chemo- or radiotherapy. Most phytochemicals, through different mechanisms, activate Nrf2, but others, such as luteolin, can act as inhibitors of both Nrf2 and NF-κB. Despite many experimental data confirming the above mechanisms currently, limited evidence exists demonstrating such activity in humans. Combinations of phytochemicals resembling that in a natural food matrix but allowing higher concentrations may improve their modulating effect on Nrf2 and NF-κB and ultimately cancer prevention and therapy. This review presents the current knowledge on the effect of selected phytochemicals and their combinations on Nrf2 and NF-κB activities in the above context.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica , Humanos , Neoplasias/metabolismo , Neoplasias/prevención & control , Transducción de Señal/efectos de los fármacos
20.
Molecules ; 26(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34443375

RESUMEN

The study aimed to evaluate the possible modulation of Nrf2, NF-ĸB and STAT3 signaling pathways in the colorectal cancer (CRC) cells line DLD-1 and HCT116 by secondary metabolites of lichens. An attempt was made to indicate the most promising targets in these signaling pathways. Attention was also paid to the effects of the compounds tested on CRC cells using anakoinosis-that is, simultaneous analysis of several signaling pathways. The effects of the tested natural compounds on the activity of selected transcriptional factors related to CRC were analyzed by Western blot and RT-PCR assays. The highest activity against CRC cells was shown by physodic and salazinic acids from the studied secondary metabolites of lichens. As a result, an increase in the activation of transcription factor Nrf2 and the expression of its selected target genes was observed. Physodic and salazinic acids induced the opposite effect in relation to the NF-κB and STAT3 pathways. These results confirmed our earlier observations that lichen-derived compounds have the ability to modulate signaling pathway networks. While caperatic acid affected Wnt/ß-catenin to the most extent, salazinic acid was the most potent modulator of Nrf2, NF-κB and STAT3 pathways. Physodic acid seemed to affect all the investigated pathways.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Depsidos/farmacología , Lactonas/farmacología , Líquenes/química , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Depsidos/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Lactonas/química , Fosforilación/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Metabolismo Secundario/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...