Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37662268

RESUMEN

Spatial locations can be encoded and maintained in working memory using high-precision, fine-grained representations that are cognitively demanding, or coarse and less demanding categorical representations. In this study, we employed an individual differences approach to identify brain activity correlates of the use of fine-grained and categorical representations in spatial working memory. We combined data from six fMRI studies, resulting in a sample of 153 (77 women, 25 ± 6 years) healthy participants performing a spatial working memory task. Our results showed that individual differences in the use of spatial representations in working memory were associated with distinct patterns of brain activation, with fine-grained representations requiring greater engagement of attentional and control brain systems, while categorical representations were associated with decreased inhibition of the default network. These findings may indicate a greater need for ongoing maintenance and protection against interference for fine-grained compared to categorical representations.

2.
Front Neuroinform ; 17: 1104508, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090033

RESUMEN

Introduction: Neuroimaging technology has experienced explosive growth and transformed the study of neural mechanisms across health and disease. However, given the diversity of sophisticated tools for handling neuroimaging data, the field faces challenges in method integration, particularly across multiple modalities and species. Specifically, researchers often have to rely on siloed approaches which limit reproducibility, with idiosyncratic data organization and limited software interoperability. Methods: To address these challenges, we have developed Quantitative Neuroimaging Environment & Toolbox (QuNex), a platform for consistent end-to-end processing and analytics. QuNex provides several novel functionalities for neuroimaging analyses, including a "turnkey" command for the reproducible deployment of custom workflows, from onboarding raw data to generating analytic features. Results: The platform enables interoperable integration of multi-modal, community-developed neuroimaging software through an extension framework with a software development kit (SDK) for seamless integration of community tools. Critically, it supports high-throughput, parallel processing in high-performance compute environments, either locally or in the cloud. Notably, QuNex has successfully processed over 10,000 scans across neuroimaging consortia, including multiple clinical datasets. Moreover, QuNex enables integration of human and non-human workflows via a cohesive translational platform. Discussion: Collectively, this effort stands to significantly impact neuroimaging method integration across acquisition approaches, pipelines, datasets, computational environments, and species. Building on this platform will enable more rapid, scalable, and reproducible impact of neuroimaging technology across health and disease.

3.
medRxiv ; 2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38168378

RESUMEN

Importance: Understanding the mechanisms of major depressive disorder (MDD) improvement is a key challenge to determine effective personalized treatments. Objective: To perform a secondary analysis quantifying neural-to-symptom relationships in MDD as a function of antidepressant treatment. Design: Double blind randomized controlled trial. Setting: Multicenter. Participants: Patients with early onset recurrent depression from the public Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study. Interventions: Either sertraline or placebo during 8 weeks (stage 1), and according to response a second line of treatment for 8 additional weeks (stage 2). Main Outcomes and Measures: To identify a data-driven pattern of symptom variations during these two stages, we performed a Principal Component Analysis (PCA) on the variations of individual items of four clinical scales measuring depression, anxiety, suicidal ideas and manic-like symptoms, resulting in a univariate measure of clinical improvement. We then investigated how initial clinical and neural factors predicted this measure during stage 1. To do so, we extracted resting-state global brain connectivity (GBC) at baseline at the individual level using a whole-brain functional network parcellation. In turn, we computed a linear model for each brain parcel with individual data-driven clinical improvement scores during stage 1 for each group. Results: 192 patients (127 women), age 37.7 years old (standard deviation: 13.5), were included. The first PC (PC1) capturing 20% of clinical variation was similar across treatment groups at stage 1 and stage 2, suggesting a reproducible pattern of symptom improvement. PC1 patients' scores significantly differed according to treatment during stage 1, whereas no difference of response was evidenced between groups with the Clinical Global Impressions (CGI). Baseline GBC correlated to stage 1 PC1 scores in the sertraline, but not in the placebo group. Conclusions and Relevance: Using data-driven reduction of symptoms scales, we identified a common profile of symptom improvement across placebo and sertraline. However, the neural patterns of baseline that mapped onto symptom improvement distinguished between treatment and placebo. Our results underscore that mapping from data-driven symptom improvement onto neural circuits is vital to detect treatment-responsive neural profiles that may aid in optimal patient selection for future trials.

4.
Front Hum Neurosci ; 16: 821545, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35517989

RESUMEN

Sustained neural activity during the delay phase of spatial working memory tasks is compelling evidence for the neural correlate of active storage and maintenance of spatial information, however, it does not provide insight into specific mechanisms of spatial coding. This activity may reflect a range of processes, such as maintenance of a stimulus position or a prepared motor response plan. The aim of our study was to examine neural evidence for the use of different coding strategies, depending on the characteristics and demands of a spatial working memory task. Thirty-one (20 women, 23 ± 5 years) and 44 (23 women, 21 ± 2 years) participants performed a spatial working memory task while we measured their brain activity using fMRI in two separate experiments. Participants were asked to remember the position of a briefly presented target stimulus and, after a delay period, to use a joystick to indicate either the position of the remembered target or an indicated non-matching location. The task was designed so that the predictability of the response could be manipulated independently of task difficulty and memory retrieval process. We were particularly interested in contrasting conditions in which participants (i) could use prospective coding of the motor response or (ii) had to rely on retrospective sensory information. Prospective motor coding was associated with activity in somatomotor, premotor, and motor cortices and increased integration of brain activity with and within the somatomotor network. In contrast, retrospective sensory coding was associated with increased activity in parietal regions and increased functional connectivity with and within secondary visual and dorsal attentional networks. The observed differences in activation levels, dynamics of differences over trial duration, and integration of information within and between brain networks provide compelling evidence for the use of complementary spatial working memory strategies optimized to meet task demands.

5.
Front Neuroimaging ; 1: 968363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37555133

RESUMEN

Multimodal neuroimaging using EEG and fMRI provides deeper insights into brain function by improving the spatial and temporal resolution of the acquired data. However, simultaneous EEG-fMRI inevitably compromises the quality of the EEG and fMRI signals due to the high degree of interaction between the two systems. Fluctuations in the magnetic flux flowing through the participant and the EEG system, whether due to movement within the magnetic field of the scanner or to changes in magnetic field strength, induce electrical potentials in the EEG recordings that mask the much weaker electrical activity of the neuronal populations. A number of different methods have been proposed to reduce MR artifacts. We present an overview of the most commonly used methods and an evaluation of the methods using three sets of diverse EEG data. We limited the evaluation to open-access and easy-to-use methods and a reference signal regression method using a set of six carbon-wire loops (CWL), which allowed evaluation of their added value. The evaluation was performed by comparing EEG signals recorded outside the MRI scanner with artifact-corrected EEG signals recorded simultaneously with fMRI. To quantify and evaluate the quality of artifact reduction methods in terms of the spectral content of the signal, we analyzed changes in oscillatory activity during a resting-state and a finger tapping motor task. The quality of artifact reduction in the time domain was assessed using data collected during a visual stimulation task. In the study we utilized hierarchical Bayesian probabilistic modeling for statistical inference and observed significant differences between the evaluated methods in the success of artifact reduction and associated signal quality in both the frequency and time domains. In particular, the CWL system proved superior to the other methods evaluated in improving spectral contrast in the alpha and beta bands and in recovering visual evoked responses. Based on the results of the evaluation study, we proposed guidelines for selecting the optimal method for MR artifact reduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...