Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(5): 112411, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37086408

RESUMEN

Cellular metabolism is tightly regulated by growth factor signaling, which promotes metabolic rewiring to support growth and proliferation. While growth factor-induced transcriptional and post-translational modes of metabolic regulation have been well defined, whether post-transcriptional mechanisms impacting mRNA stability regulate this process is less clear. Here, we present the ZFP36/L1/L2 family of RNA-binding proteins and mRNA decay factors as key drivers of metabolic regulation downstream of acute growth factor signaling. We quantitatively catalog metabolic enzyme and nutrient transporter mRNAs directly bound by ZFP36 following growth factor stimulation-many of which encode rate-limiting steps in metabolic pathways. Further, we show that ZFP36 directly promotes the mRNA decay of Enolase 2 (Eno2), altering Eno2 protein expression and enzymatic activity, and provide evidence of a ZFP36/Eno2 axis during VEGF-stimulated developmental retinal angiogenesis. Thus, ZFP36-mediated mRNA decay serves as an important mode of metabolic regulation downstream of growth factor signaling within dynamic cell and tissue states.


Asunto(s)
Proteínas de Unión al ARN , Transducción de Señal , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Estabilidad del ARN/genética , Tristetraprolina/genética , Tristetraprolina/metabolismo
2.
Nat Cancer ; 3(11): 1386-1403, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36411320

RESUMEN

The pancreatic tumor microenvironment drives deregulated nutrient availability. Accordingly, pancreatic cancer cells require metabolic adaptations to survive and proliferate. Pancreatic cancer subtypes have been characterized by transcriptional and functional differences, with subtypes reported to exist within the same tumor. However, it remains unclear if this diversity extends to metabolic programming. Here, using metabolomic profiling and functional interrogation of metabolic dependencies, we identify two distinct metabolic subclasses among neoplastic populations within individual human and mouse tumors. Furthermore, these populations are poised for metabolic cross-talk, and in examining this, we find an unexpected role for asparagine supporting proliferation during limited respiration. Constitutive GCN2 activation permits ATF4 signaling in one subtype, driving excess asparagine production. Asparagine release provides resistance during impaired respiration, enabling symbiosis. Functionally, availability of exogenous asparagine during limited respiration indirectly supports maintenance of aspartate pools, a rate-limiting biosynthetic precursor. Conversely, depletion of extracellular asparagine with PEG-asparaginase sensitizes tumors to mitochondrial targeting with phenformin.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Animales , Ratones , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Asparagina/metabolismo , Adenocarcinoma/tratamiento farmacológico , Simbiosis , Microambiente Tumoral , Neoplasias Pancreáticas
3.
Cell Metab ; 33(5): 1013-1026.e6, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33609439

RESUMEN

Mitochondrial respiration is critical for cell proliferation. In addition to producing ATP, respiration generates biosynthetic precursors, such as aspartate, an essential substrate for nucleotide synthesis. Here, we show that in addition to depleting intracellular aspartate, electron transport chain (ETC) inhibition depletes aspartate-derived asparagine, increases ATF4 levels, and impairs mTOR complex I (mTORC1) activity. Exogenous asparagine restores proliferation, ATF4 and mTORC1 activities, and mTORC1-dependent nucleotide synthesis in the context of ETC inhibition, suggesting that asparagine communicates active respiration to ATF4 and mTORC1. Finally, we show that combination of the ETC inhibitor metformin, which limits tumor asparagine synthesis, and either asparaginase or dietary asparagine restriction, which limit tumor asparagine consumption, effectively impairs tumor growth in multiple mouse models of cancer. Because environmental asparagine is sufficient to restore tumor growth in the context of respiration impairment, our findings suggest that asparagine synthesis is a fundamental purpose of tumor mitochondrial respiration, which can be harnessed for therapeutic benefit to cancer patients.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Asparagina/metabolismo , Mitocondrias/metabolismo , Animales , Asparagina/farmacología , Ácido Aspártico/deficiencia , Ácido Aspártico/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dieta/veterinaria , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Ratones Endogámicos NOD , Mitocondrias/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/mortalidad , Neoplasias/patología , Nucleótidos/metabolismo , Tasa de Supervivencia
4.
Leuk Lymphoma ; 61(2): 420-428, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31526067

RESUMEN

Asparaginase (ASNase) is an integral part of pediatric induction chemotherapy that has also been shown to improve adult survival rates; however, pegylated (PEG)-ASNase induces severe hepatotoxicity in this population. Recent case reports describe the incorporation of levocarnitine (LC) supplementation into PEG-ASNase-containing induction regimens to prevent or treat hepatotoxicity. Because LC facilitates the metabolism of free fatty acids (FFA), a primary fuel source for ALL cells, LC could potentially interfere with ALL chemotherapy efficacy. To test this, we employed in vitro and in vivo models of ALL. We show in vitro that LC supplementation does not impact cytotoxicity from vincristine, daunorubicin, dexamethasone, or ASNase on human ALL cells nor lead to an increase in ALL cell metabolic rate. In vivo, we demonstrate LC does not impair PEG-ASNase monotherapy in mice with syngeneic ALL. Together, our findings show that LC supplementation is a safe strategy to prevent/reverse ASNase-induced toxicities in preclinical models.


Asunto(s)
Carnitina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Enfermedad Aguda , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Asparaginasa/uso terapéutico , Carnitina/uso terapéutico , Humanos , Quimioterapia de Inducción , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico
5.
Nat Cell Biol ; 19(9): 1017-1026, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28812580

RESUMEN

Although normally dormant, hair follicle stem cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis. Furthermore, lactate generation appears to be critical for the activation of HFSCs as deletion of lactate dehydrogenase (Ldha) prevented their activation. Conversely, genetically promoting lactate production in HFSCs through mitochondrial pyruvate carrier 1 (Mpc1) deletion accelerated their activation and the hair cycle. Finally, we identify small molecules that increase lactate production by stimulating Myc levels or inhibiting Mpc1 carrier activity and can topically induce the hair cycle. These data suggest that HFSCs maintain a metabolic state that allows them to remain dormant and yet quickly respond to appropriate proliferative stimuli.


Asunto(s)
Proliferación Celular , Senescencia Celular , Glucólisis , Folículo Piloso/enzimología , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Células Madre/enzimología , Acrilatos/farmacología , Animales , Proteínas de Transporte de Anión/antagonistas & inhibidores , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Femenino , Genotipo , Glucólisis/efectos de los fármacos , Folículo Piloso/citología , Folículo Piloso/efectos de los fármacos , Isoenzimas/deficiencia , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/deficiencia , L-Lactato Deshidrogenasa/genética , Lactato Deshidrogenasa 5 , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos , Fenotipo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Células Madre/efectos de los fármacos , Factores de Tiempo
6.
Nature ; 546(7658): 357-358, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28607481
7.
Nat Commun ; 7: 11457, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-27126896

RESUMEN

Cellular amino acid uptake is critical for mTOR complex 1 (mTORC1) activation and cell proliferation. However, the regulation of amino acid uptake is not well-understood. Here we describe a role for asparagine as an amino acid exchange factor: intracellular asparagine exchanges with extracellular amino acids. Through asparagine synthetase knockdown and altering of media asparagine concentrations, we show that intracellular asparagine levels regulate uptake of amino acids, especially serine, arginine and histidine. Through its exchange factor role, asparagine regulates mTORC1 activity and protein synthesis. In addition, we show that asparagine regulation of serine uptake influences serine metabolism and nucleotide synthesis, suggesting that asparagine is involved in coordinating protein and nucleotide synthesis. Finally, we show that maintenance of intracellular asparagine levels is critical for cancer cell growth. Collectively, our results indicate that asparagine is an important regulator of cancer cell amino acid homeostasis, anabolic metabolism and proliferation.


Asunto(s)
Asparagina/metabolismo , Aspartatoamoníaco Ligasa/genética , Regulación Neoplásica de la Expresión Génica , Glutamina/metabolismo , Redes y Vías Metabólicas/genética , Complejos Multiproteicos/genética , Serina-Treonina Quinasas TOR/genética , Arginina/metabolismo , Aspartatoamoníaco Ligasa/metabolismo , Transporte Biológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Medios de Cultivo/química , Medios de Cultivo/farmacología , Células HeLa , Histidina/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Redes y Vías Metabólicas/efectos de los fármacos , Complejos Multiproteicos/metabolismo , Nucleótidos/biosíntesis , Serina/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
8.
Nat Cell Biol ; 17(12): 1515-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26612572

RESUMEN

Tumours reprogram their metabolism to maximize macromolecule biosynthesis for growth. However, which of the common tumour-associated metabolic activities are critical for proliferation remains unclear. Glutamate-derived glutamine is now shown to satisfy the glutamine needs of glioblastoma, indicating that glutamine anaplerosis is dispensable for growth.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Proliferación Celular , Glioblastoma/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/metabolismo , Nucleótidos/biosíntesis , Animales , Femenino , Humanos , Masculino
10.
J Biol Chem ; 287(38): 32006-16, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22822071

RESUMEN

Histone deacetylases (HDACs) function in a wide range of molecular processes, including gene expression, and are of significant interest as therapeutic targets. Although their native complexes, subcellular localization, and recruitment mechanisms to chromatin have been extensively studied, much less is known about whether the enzymatic activity of non-sirtuin HDACs can be regulated by natural metabolites. Here, we show that several coenzyme A (CoA) derivatives, such as acetyl-CoA, butyryl-CoA, HMG-CoA, and malonyl-CoA, as well as NADPH but not NADP(+), NADH, or NAD(+), act as allosteric activators of recombinant HDAC1 and HDAC2 in vitro following a mixed activation kinetic. In contrast, free CoA, like unconjugated butyrate, inhibits HDAC activity in vitro. Analysis of a large number of engineered HDAC1 mutants suggests that the HDAC activity can potentially be decoupled from "activatability" by the CoA derivatives. In vivo, pharmacological inhibition of glucose-6-phosphate dehydrogenase (G6PD) to decrease NADPH levels led to significant increases in global levels of histone H3 and H4 acetylation. The similarity in structures of the identified metabolites and the exquisite selectivity of NADPH over NADP(+), NADH, and NAD(+) as an HDAC activator reveal a previously unrecognized biochemical feature of the HDAC proteins with important consequences for regulation of histone acetylation as well as the development of more specific and potent HDAC inhibitors.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Histona Desacetilasa 1/metabolismo , Histona Desacetilasas/metabolismo , Sirtuinas/química , Sitio Alostérico , Animales , Núcleo Celular/metabolismo , Cromatina/química , Coenzima A/química , Epigénesis Genética , Células HeLa , Histona Desacetilasa 1/antagonistas & inhibidores , Histonas/metabolismo , Humanos , Insectos , Cinética , Mutación , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...