Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(10): 5959-5974, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38426935

RESUMEN

Tandem donor splice sites (5'ss) are unique regions with at least two GU dinucleotides serving as splicing cleavage sites. The Δ3 tandem 5'ss are a specific subclass of 5'ss separated by 3 nucleotides which can affect protein function by inserting/deleting a single amino acid. One 5'ss is typically preferred, yet factors governing particular 5'ss choice are not fully understood. A highly conserved exon 21 of the STAT3 gene was chosen as a model to study Δ3 tandem 5'ss splicing mechanisms. Based on multiple lines of experimental evidence, endogenous U1 snRNA most likely binds only to the upstream 5'ss. However, the downstream 5'ss is used preferentially, and the splice site choice is not dependent on the exact U1 snRNA binding position. Downstream 5'ss usage was sensitive to exact nucleotide composition and dependent on the presence of downstream regulatory region. The downstream 5'ss usage could be best explained by two novel interactions with endogenous U6 snRNA. U6 snRNA enables the downstream 5'ss usage in STAT3 exon 21 by two mechanisms: (i) binding in a novel non-canonical register and (ii) establishing extended Watson-Crick base pairing with the downstream regulatory region. This study suggests that U6:5'ss interaction is more flexible than previously thought.


Asunto(s)
Exones , Sitios de Empalme de ARN , ARN Nuclear Pequeño , Factor de Transcripción STAT3 , ARN Nuclear Pequeño/metabolismo , ARN Nuclear Pequeño/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Humanos , Sitios de Unión/genética , Empalme del ARN , Unión Proteica , Secuencia de Bases , Células HeLa
2.
J Clin Immunol ; 43(8): 1974-1991, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37620742

RESUMEN

Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare and life-threatening condition characterized by recurrent localized edema. We conducted a systematic screening of SERPING1 defects in a cohort of 207 Czech patients from 85 families with C1-INH-HAE. Our workflow involved a combined strategy of sequencing extended to UTR and deep intronic regions, advanced in silico prediction tools, and mRNA-based functional assays. This approach allowed us to detect a causal variant in all families except one and to identify a total of 56 different variants, including 5 novel variants that are likely to be causal. We further investigated the functional impact of two splicing variants, namely c.550 + 3A > C and c.686-7C > G using minigene assays and RT-PCR mRNA analysis. Notably, our cohort showed a considerably higher proportion of detected splicing variants compared to other central European populations and the LOVD database. Moreover, our findings revealed a significant association between HAE type 1 missense variants and a delayed HAE onset when compared to null variants. We also observed a significant correlation between the presence of the SERPING1 variant c.-21 T > C in the trans position to causal variants and the frequency of attacks per year, disease onset, as well as Clinical severity score. Overall, our study provides new insights into the genetic landscape of C1-INH-HAE in the Czech population, including the identification of novel variants and a better understanding of genotype-phenotype correlations. Our findings also highlight the importance of comprehensive screening strategies and functional analyses in improving the C1-INH-HAE diagnosis and management.


Asunto(s)
Angioedemas Hereditarios , Proteína Inhibidora del Complemento C1 , Humanos , Proteína Inhibidora del Complemento C1/genética , Angioedemas Hereditarios/diagnóstico , Angioedemas Hereditarios/epidemiología , Angioedemas Hereditarios/genética , República Checa/epidemiología , Empalme del ARN , ARN Mensajero
3.
Genet Med ; 24(2): 293-306, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34906454

RESUMEN

PURPOSE: In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published consensus standardized guidelines for sequence-level variant classification in Mendelian disorders. To increase accuracy and consistency, the Clinical Genome Resource Familial Hypercholesterolemia (FH) Variant Curation Expert Panel was tasked with optimizing the existing ACMG/AMP framework for disease-specific classification in FH. In this study, we provide consensus recommendations for the most common FH-associated gene, LDLR, where >2300 unique FH-associated variants have been identified. METHODS: The multidisciplinary FH Variant Curation Expert Panel met in person and through frequent emails and conference calls to develop LDLR-specific modifications of ACMG/AMP guidelines. Through iteration, pilot testing, debate, and commentary, consensus among experts was reached. RESULTS: The consensus LDLR variant modifications to existing ACMG/AMP guidelines include (1) alteration of population frequency thresholds, (2) delineation of loss-of-function variant types, (3) functional study criteria specifications, (4) cosegregation criteria specifications, and (5) specific use and thresholds for in silico prediction tools, among others. CONCLUSION: Establishment of these guidelines as the new standard in the clinical laboratory setting will result in a more evidence-based, harmonized method for LDLR variant classification worldwide, thereby improving the care of patients with FH.


Asunto(s)
Genoma Humano , Hiperlipoproteinemia Tipo II , Pruebas Genéticas/métodos , Variación Genética/genética , Genoma Humano/genética , Genómica/métodos , Humanos , Hiperlipoproteinemia Tipo II/genética
4.
Cell Mol Life Sci ; 78(21-22): 6979-6993, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34596691

RESUMEN

Among alternative splicing events in the human transcriptome, tandem NAGNAG acceptor splice sites represent an appreciable proportion. Both proximal and distal NAG can be used to produce two splicing isoforms differing by three nucleotides. In some cases, the upstream exon can be alternatively spliced as well, which further increases the number of possible transcripts. In this study, we showed that NAG choice in tandem splice site depends considerably not only on the concerned acceptor, but also on the upstream donor splice site sequence. Using an extensive set of experiments with systematically modified two-exonic minigene systems of AFAP1L2 or CSTD gene, we recognized the third and fifth intronic upstream donor splice site position and the tandem acceptor splice site region spanning from -10 to +2, including NAGNAG itself, as the main drivers. In addition, competition between different branch points and their composition were also shown to play a significant role in NAG choice. All these nucleotide effects appeared almost additive, which explained the high variability in proximal versus distal NAG usage.


Asunto(s)
Empalme Alternativo/genética , Nucleótidos/genética , Sitios de Empalme de ARN/genética , Secuencias Repetidas en Tándem/genética , Línea Celular Tumoral , Exones/genética , Células HeLa , Humanos , Intrones/genética
5.
RNA Biol ; 16(10): 1364-1376, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31213135

RESUMEN

Splicing-affecting mutations can disrupt gene function by altering the transcript assembly. To ascertain splicing dysregulation principles, we modified a minigene assay for the parallel high-throughput evaluation of different mutations by next-generation sequencing. In our model system, all exonic and six intronic positions of the SMN1 gene's exon 7 were mutated to all possible nucleotide variants, which amounted to 180 unique single-nucleotide mutants and 470 double mutants. The mutations resulted in a wide range of splicing aberrations. Exonic splicing-affecting mutations resulted either in substantial exon skipping, supposedly driven by predicted exonic splicing silencer or cryptic donor splice site (5'ss) and de novo 5'ss strengthening and use. On the other hand, a single disruption of exonic splicing enhancer was not sufficient to cause major exon skipping, suggesting these elements can be substituted during exon recognition. While disrupting the acceptor splice site led only to exon skipping, some 5'ss mutations potentiated the use of three different cryptic 5'ss. Generally, single mutations supporting cryptic 5'ss use displayed better pre-mRNA/U1 snRNA duplex stability and increased splicing regulatory element strength across the original 5'ss. Analyzing double mutants supported the predominating splicing regulatory elements' effect, but U1 snRNA binding could contribute to the global balance of splicing isoforms. Based on these findings, we suggest that creating a new splicing enhancer across the mutated 5'ss can be one of the main factors driving cryptic 5'ss use.


Asunto(s)
Empalme Alternativo , Exones , Mutación , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Línea Celular , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Simulación de Dinámica Molecular , Mutagénesis , Conformación de Ácido Nucleico , Unión Proteica , Sitios de Empalme de ARN , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/química , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
6.
Clin Immunol ; 180: 33-44, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28359783

RESUMEN

Both variants affecting splice sites and those in splicing regulatory elements (SREs) can impair pre-mRNA splicing, eventually leading to severe diseases. Despite the availability of many prediction tools, prognosis of splicing affection is not trivial, especially when SREs are involved. Here, we present data on 92 in silico-/55 minigene-analysed variants detected in genes responsible for the primary immunodeficiencies development (namely BTK, CD40LG, IL2RG, SERPING1, STAT3, and WAS). Of 20 splicing-affecting variants, 16 affected splice site while 4 disrupted potential SRE. The presence or absence of splicing defects was confirmed in 30 of 32 blood-derived patients' RNAs. Testing prediction tools performance, splice site disruptions and creations were reliably predicted in contrast to SRE-affecting variants for which just ESRseq, ΔHZEI-scores and EX-SKIP predictions showed promising results. Next, we found an interesting pattern in cryptic splice site predictions. These results might help PID-diagnosticians and geneticists cope with potential splicing-affecting variants.


Asunto(s)
Síndromes de Inmunodeficiencia/genética , Empalme del ARN , Agammaglobulinemia Tirosina Quinasa , Niño , Preescolar , Proteínas Inactivadoras del Complemento 1/genética , Proteína Inhibidora del Complemento C1 , Exones , Células HeLa , Células Hep G2 , Humanos , Lactante , Subunidad gamma Común de Receptores de Interleucina/genética , Mutación , Proteínas Tirosina Quinasas/genética , ARN Mensajero/genética , Proteínas Recombinantes de Fusión/genética , Factor de Transcripción STAT3/genética , Células U937 , Proteína del Síndrome de Wiskott-Aldrich/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA