Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nutr Diabetes ; 14(1): 40, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844453

RESUMEN

BACKGROUND: High-protein diets are often enriched with branched-chain amino acids (BCAAs) known to enhance protein synthesis and provide numerous physiological benefits, but recent studies reveal their association with obesity and diabetes. In support of this, protein or BCAA supplementation is shown to disrupt glucose metabolism while restriction improves it. However, it is not clear if these are primary, direct effects of BCAAs or secondary to other physiological changes during chronic manipulation of dietary BCAAs. METHODS: Three-month-old C57Bl/6 mice were acutely treated with either vehicle/BCAAs or BT2, a BCAA-lowering compound, and detailed in vivo metabolic phenotyping, including frequent sampling and pancreatic clamps, were conducted. RESULTS: Using a catheter-guided frequent sampling method in mice, here we show that a single infusion of BCAAs was sufficient to acutely elevate blood glucose and plasma insulin. While pre-treatment with BCAAs did not affect glucose tolerance, a constant infusion of BCAAs during hyperinsulinemic-euglycemic clamps impaired whole-body insulin sensitivity. Similarly, a single injection of BT2 was sufficient to prevent BCAA rise during fasting and markedly improve glucose tolerance in high-fat-fed mice, suggesting that abnormal glycemic control in obesity may be causally linked to high circulating BCAAs. We further show that chemogenetic over-activation of AgRP neurons in the hypothalamus, as present in obesity, significantly impairs glucose tolerance that is completely normalized by acute BCAA reduction. Interestingly, most of these effects were demonstrated only in male, but not in female mice. CONCLUSION: These findings suggest that BCAAs per se can acutely impair glucose homeostasis and insulin sensitivity, thus offering an explanation for how they may disrupt glucose metabolism in the long-term as observed in obesity and diabetes. Our findings also reveal that AgRP neuronal regulation of blood glucose is mediated through BCAAs, further elucidating a novel mechanism by which brain controls glucose homeostasis.


Asunto(s)
Proteína Relacionada con Agouti , Aminoácidos de Cadena Ramificada , Glucemia , Resistencia a la Insulina , Ratones Endogámicos C57BL , Neuronas , Animales , Resistencia a la Insulina/fisiología , Proteína Relacionada con Agouti/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Masculino , Ratones , Glucemia/metabolismo , Femenino , Aminoácidos de Cadena Ramificada/metabolismo , Insulina/sangre , Insulina/metabolismo , Técnica de Clampeo de la Glucosa , Dieta Alta en Grasa , Obesidad/metabolismo
2.
Nutrients ; 15(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37049555

RESUMEN

Type 2 diabetes (T2D) is a challenging health concern worldwide. A lifestyle intervention to treat T2D is difficult to adhere, and the effectiveness of approved medications such as metformin, thiazolidinediones (TZDs), and sulfonylureas are suboptimal. On the other hand, bariatric procedures such as Roux-en-Y gastric bypass (RYGB) are being recognized for their remarkable ability to achieve diabetes remission, although the underlying mechanism is not clear. Recent evidence points to branched-chain amino acids (BCAAs) as a potential contributor to glucose impairment and insulin resistance. RYGB has been shown to effectively lower plasma BCAAs in insulin-resistant or T2D patients that may help improve glycemic control, but the underlying mechanism for BCAA reduction is not understood. Hence, we attempted to explore the mechanism by which RYGB reduces BCAAs. To this end, we randomized diet-induced obese (DIO) mice into three groups that underwent either sham or RYGB surgery or food restriction to match the weight of RYGB mice. We also included regular chow-diet-fed healthy mice as an additional control group. Here, we show that compared to sham surgery, RYGB in DIO mice markedly lowered serum BCAAs most likely by rescuing BCAA breakdown in both liver and white adipose tissues. Importantly, the restored BCAA metabolism following RYGB was independent of caloric intake. Fasting insulin and HOMA-IR were decreased as expected, and serum valine was strongly associated with insulin resistance. While gut hormones such as glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are postulated to mediate various surgery-induced metabolic benefits, mice lacking these hormonal signals (GLP-1R/Y2R double KO) were still able to effectively lower plasma BCAAs and improve glucose tolerance, similar to mice with intact GLP-1 and PYY signaling. On the other hand, mice deficient in fibroblast growth factor 21 (FGF21), another candidate hormone implicated in enhanced glucoregulatory action following RYGB, failed to decrease plasma BCAAs and normalize hepatic BCAA degradation following surgery. This is the first study using an animal model to successfully recapitulate the RYGB-led reduction of circulating BCAAs observed in humans. Our findings unmasked a critical role of FGF21 in mediating the rescue of BCAA metabolism following surgery. It would be interesting to explore the possibility of whether RYGB-induced improvement in glucose homeostasis is partly through decreased BCAAs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Derivación Gástrica , Resistencia a la Insulina , Humanos , Ratones , Animales , Obesidad/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Aminoácidos de Cadena Ramificada , Insulina , Péptido 1 Similar al Glucagón/metabolismo , Glucosa , Glucemia/metabolismo
3.
Cells ; 11(21)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36359919

RESUMEN

Alzheimer's disease (AD) is an irreversible neurodegenerative disorder with a complex pathophysiology. Type 2 diabetes (T2D) is a strong risk factor for AD that shares similar abnormal features including metabolic dysregulation and brain pathology such as amyloid and/or Tau deposits. Emerging evidence suggests that circulating branched-chain amino acids (BCAAs) are associated with T2D. While excess BCAAs are shown to be harmful to neurons, its connection to AD is poorly understood. Here we show that individuals with AD have elevated circulating BCAAs and their metabolites compared to healthy individuals, and that a BCAA metabolite is correlated with the severity of dementia. APPSwe mouse model of AD also displayed higher plasma BCAAs compared to controls. In pursuit of understanding a potential causality, BCAA supplementation to HT-22 neurons was found to reduce genes critical for neuronal health while increasing phosphorylated Tau. Moreover, restricting BCAAs from diet delayed cognitive decline and lowered AD-related pathology in the cortex and hippocampus in APP/PS1 mice. BCAA restriction for two months was sufficient to correct glycemic control and increased/restored dopamine that were severely reduced in APP/PS1 controls. Treating 5xFAD mice that show early brain pathology with a BCAA-lowering compound recapitulated the beneficial effects of BCAA restriction on brain pathology and neurotransmitters including norepinephrine and serotonin. Collectively, this study reveals a positive association between circulating BCAAs and AD. Our findings suggest that BCAAs impair neuronal functions whereas BCAA-lowering alleviates AD-related pathology and cognitive decline, thus establishing a potential causal link between BCAAs and AD progression.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Ratones , Animales , Aminoácidos de Cadena Ramificada/metabolismo , Enfermedad de Alzheimer/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cognición
4.
Pediatr Qual Saf ; 5(5): e354, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33062905

RESUMEN

INTRODUCTION: Patient outcomes resulting from optimal type 1 diabetes (T1D) care have historically focused on driving a single metric, hemoglobin A1c. Our objectives were to design, build, and launch an aggregate clinical indicator that comprehensively reflects patient management status beyond hemoglobin A1c alone. This project aimed to show proof of principle that an aggregate score comprised of T1D outcome metrics could be built to track quality performance. METHODS: We established an electronic medical record-based diabetes registry and utilized its population health modules to design and build this diabetes care metric. Elements representing optimal diabetes management, as defined by current guidelines and expert opinion, were identified. Nine elements fall into categories of management tools, care assessments, and complications risk. The Type 1 Diabetes Composite Score (T1DCS) aggregates these outcome measures to reflect the overall diabetes care status for each patient. Higher scores suggest better management and overall improved patient health. RESULTS: We launched this metric build in November 2018 and applied the scoring to our T1D population (≈1,900 patients). The T1DCS quickly provides a summary of current diabetes management status. T1DCS viewed over the registry cohort demonstrates a normal distribution, and scores improved from March to September 2019, reflecting better care and outcomes, and illustrating the potential to track program effectiveness. CONCLUSIONS: The T1DCS is a useful metric to evaluate the clinical status of T1D patients, assess the capability of a clinical program to achieve optimal diabetes outcomes, identify patient diversity opportunities, and document outcome improvement as a novel comprehensive quality measure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...