Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Case Rep Radiol ; 2023: 3178778, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089103

RESUMEN

Infantile fibrosarcoma (IF) is a rare malignant fibroblastic tumor that affects infants and young children, occurring most commonly in the extremities. Here, we present a 14-year-old patient with an abdominal mass incidentally detected after a blunt injury to the abdomen. The initial trauma protocol CT revealed a high attenuation mesenteric lesion in the left central abdomen suggestive of mesenteric hematoma. However, the possibility of a solid neoplastic mass lesion could not be excluded. Further evaluation with dynamic contrast-enhanced serial MRI showed a progressive enhancing mass and excluded a hyperacute hematoma with active bleeding. The mass was resected, and histopathological examination and molecular analysis of tumor cells were consistent with a high-grade fibrosarcoma with KMT2D : BCOR fusion.

2.
Brain Behav ; 13(7): e3042, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37218403

RESUMEN

BACKGROUND AND PURPOSE: The discovery of glymphatic function in the human brain has generated interest in waste clearance mechanisms in neurological disorders such as multiple sclerosis (MS). However, noninvasive in vivo functional assessment is currently lacking. This work studies the feasibility of a novel intravenous dynamic contrast MRI method to assess the dural lymphatics, a purported pathway contributing to glymphatic clearance. METHODS: This prospective study included 20 patients with MS (17 women; age = 46.4 [27, 65] years; disease duration = 13.6 [2.1, 38.0] years, expanded disability status score (EDSS) = 2.0 [0, 6.5]). Patients were scanned on a 3.0T MRI system using intravenous contrast-enhanced fluid-attenuated inversion recovery MRI. Signal in the dural lymphatic vessel along the superior sagittal sinus was measured to calculate peak enhancement, time to maximum enhancement, wash-in and washout slopes, and the area under the time-intensity curve (AUC). Correlation analysis was performed to examine the relationship between the lymphatic dynamic parameters and the demographic and clinical characteristics, including the lesion load and the brain parenchymal fraction (BPF). RESULTS: Contrast enhancement was detected in the dural lymphatics in most patients 2-3 min after contrast administration. BPF had a significant correlation with AUC (p < .03), peak enhancement (p < .01), and wash-in slope (p = .01). Lymphatic dynamic parameters did not correlate with age, BMI, disease duration, EDSS, or lesion load. Moderate trends were observed for correlation between patient age and AUC (p = .062), BMI and peak enhancement (p = .059), and BMI and AUC (p = .093). CONCLUSION: Intravenous dynamic contrast MRI of the dural lymphatics is feasible and may be useful in characterizing its hydrodynamics in neurological diseases.


Asunto(s)
Vasos Linfáticos , Esclerosis Múltiple , Humanos , Femenino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Estudios Prospectivos , Vasos Linfáticos/diagnóstico por imagen , Vasos Linfáticos/metabolismo , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología
3.
NPJ Microgravity ; 8(1): 42, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202836

RESUMEN

Neuro-ocular changes during long-duration space flight are known as spaceflight-associated neuro-ocular syndrome (SANS). The ability to detect, monitor, and prevent SANS is a priority of current space medicine research efforts. Optic nerve sheath diameter (ONSD) measurement has been used both terrestrially and in microgravity as a proxy for measurements of elevated intracranial pressure. ONSD shows promise as a potential method of identifying and quantitating neuro-ocular changes during space flight. This review examines 13 studies measuring ONSD and its relationship to microgravity exposure or ground-based analogs, including head-down tilt, dry immersion, or animal models. The goal of this correspondence is to describe heterogeneity in the use of ONSD in the current SANS literature and make recommendations to reduce heterogeneity in future studies through standardization of imaging modalities, measurement techniques, and other aspects of study design.

4.
J Magn Reson Imaging ; 56(3): 873-881, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35119781

RESUMEN

BACKGROUND: Optic disc edema develops in most astronauts during long-duration spaceflight. It is hypothesized to result from weightlessness-induced venous congestion of the head and neck and is an unresolved health risk of space travel. PURPOSE: Determine if short-term application of lower body negative pressure (LBNP) could reduce internal jugular vein (IJV) expansion associated with the supine posture without negatively impacting cerebral perfusion or causing IJV flow stasis. STUDY TYPE: Prospective. SUBJECTS: Nine healthy volunteers (six women). FIELD STRENGTH/SEQUENCE: 3T/cine two-dimensional phase-contrast gradient echo; pseudo-continuous arterial spin labeling single-shot gradient echo echo-planar. ASSESSMENT: The study was performed with two sequential conditions in randomized order: supine posture and supine posture with 25 mmHg LBNP (LBNP25 ). LBNP was achieved by enclosing the lower extremities in a semi-airtight acrylic chamber connected to a vacuum. Heart rate, bulk cerebrovasculature flow, IJV cross-sectional area, fractional IJV outflow relative to arterial inflow, and cerebral perfusion were assessed in each condition. STATISTICAL TESTS: Paired t-tests were used to compare measurement means across conditions. Significance was defined as P < 0.05. RESULTS: LBNP25 significantly increased heart rate from 64 ± 9 to 71 ± 8 beats per minute and significantly decreased IJV cross-sectional area, IJV outflow fraction, cerebral arterial flow rate, and cerebral arterial stroke volume from 1.28 ± 0.64 to 0.56 ± 0.31 cm2 , 0.75 ± 0.20 to 0.66 ± 0.28, 780 ± 154 to 708 ± 137 mL/min and 12.2 ± 2.8 to 9.7 ± 1.7 mL/cycle, respectively. During LBNP25 , there was no significant change in gray or white matter cerebral perfusion (P = 0.26 and P = 0.24 respectively) and IJV absolute mean peak flow velocity remained ≥4 cm/sec in all subjects. DATA CONCLUSION: Short-term application of LBNP25 reduced IJV expansion without decreasing cerebral perfusion or inducing IJV flow stasis. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.


Asunto(s)
Vuelo Espacial , Ingravidez , Circulación Cerebrovascular/fisiología , Femenino , Humanos , Venas Yugulares/fisiología , Presión Negativa de la Región Corporal Inferior , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Vuelo Espacial/métodos
6.
Case Rep Neurol ; 13(2): 388-393, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248575

RESUMEN

Stroke is a common cause of mortality and serious long-term disability worldwide. In the acute setting, current American Heart Association/American Stroke Association guidelines do not recommend routine anticoagulation for the management of acute ischemic strokes. However, short-term use of unfractionated heparin (UFH) in select subpopulations has demonstrated improved outcomes. While tools such as CHADSVASC and HASBLED scores are useful in stratifying risk of long-term anticoagulation in patients with nonvalvular atrial fibrillation and additional risk factors, the carefully selected patient populations for the design of these studies do not account for risk of hemorrhage from other preexisting conditions. Here, we present a patient with a posterior circulation intraluminal thrombus treated with UFH, who manifested with a near-fatal intra-abdominal hemorrhage from a previously undetected renal angiomyolipoma (AML).

7.
JAMA Ophthalmol ; 139(7): 781-784, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34014272

RESUMEN

IMPORTANCE: Long-duration spaceflight induces structural changes in the brain and eye. Identification of an association between cerebral and ocular changes could help determine if there are common or independent causes and inform targeted prevention strategies or treatments. OBJECTIVE: To determine if there is an association between quantitative changes in intracranial compartment volumes and peripapillary total retinal thickness after spaceflight. DESIGN, SETTING, AND PARTICIPANTS: This cohort study included healthy International Space Station crew members before and immediately after long-duration spaceflight. Data on race were not collected. Analysis was conducted from September to November 2020. EXPOSURES: Long-duration spaceflight (mean [SD], 191 [55] days). MAIN OUTCOMES AND MEASURES: Optical coherence tomography-derived peripapillary total retinal thickness as a quantitative assessment and early sign of optic disc edema and magnetic resonance imaging-derived measures of lateral ventricle volume, white matter volume, and whole brain plus cerebrospinal fluid volume. RESULTS: In 19 healthy crew members included in this study (5 women [26.3%], 14 men [73.7%]; mean [SD] age, 45.2 [6.4] years), analyses revealed a positive, although not definitive, association between spaceflight-induced changes in total retinal thickness and lateral ventricle volume (4.7-µm increase in postflight total retinal thickness [95% CI, -1.5 to 10.8 µm; P = .13] per 1-mL postflight increase in lateral ventricle volume). Adjustments for mission duration improved the strength of association (5.1 µm; 95% CI, -0.4 to 10.5 µm; P = .07). No associations were detected between spaceflight-induced changes in total retinal thickness and white matter volume (0.02 µm; 95% CI, -0.5 to 0.5 µm; P = .94) or brain tissue plus cerebrospinal fluid volume, an estimate of intracranial volume (0.02 µm; 95% CI, -0.6 to 0.6 µm; P = .95). CONCLUSIONS AND RELEVANCE: These results help characterize spaceflight-associated neuro-ocular syndrome and the physiologic associations of headward fluid shifts with outcomes during spaceflight on the central nervous system. The possibly weak association between increased total retinal thickness and lateral ventricle volume suggest that while weightlessness-induced fluid redistribution during spaceflight may be a common stressor to the brain and retina, the development of optic disc edema appears to be uncoupled with changes occurring in the intracranial compartment.


Asunto(s)
Papiledema , Vuelo Espacial , Astronautas , Encéfalo , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Papiledema/diagnóstico por imagen , Papiledema/etiología , Retina/diagnóstico por imagen
8.
Neuroophthalmology ; 45(1): 29-35, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33762785

RESUMEN

Posterior globe flattening has been well-documented in astronauts both during and after long-duration space flight (LDSF) and has been observed as early as 10 days into a mission on the International Space Station. Globe flattening (GF) is thought to be caused by the disc centred anterior forces created by elevated volume and/or pressure within the optic nerve sheath (ONS). This might be the result of increased intracranial pressure, increased intraorbital ONS pressure from compartmentalisation or a combination of these mechanisms. We report posterior GF in three astronauts that has persisted for 7 years or more following their return from LDSFs suggesting that permanent scleral remodelling may have occurred.

9.
Eye (Lond) ; 35(7): 1869-1878, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33514895

RESUMEN

BACKGROUND/OBJECTIVES: Spaceflight associated neuro-ocular syndrome (SANS), a health risk related to long-duration spaceflight, is hypothesized to result from a headward fluid shift that occurs with the loss of hydrostatic pressure gradients in weightlessness. Shifts in the vascular and cerebrospinal fluid compartments alter the mechanical forces at the posterior eye and lead to flattening of the posterior ocular globe. The goal of the present study was to develop a method to quantify globe flattening observed by magnetic resonance imaging after spaceflight. SUBJECTS/METHODS: Volumetric displacement of the posterior globe was quantified in 10 astronauts at 5 time points after spaceflight missions of ~6 months. RESULTS: Mean globe volumetric displacement was 9.88 mm3 (95% CI 4.56-15.19 mm3, p < 0.001) on the first day of assessment after the mission (R[return]+ 1 day); 9.00 mm3 (95% CI 3.73-14.27 mm3, p = 0.001) at R + 30 days; 6.53 mm3 (95% CI 1.24-11.83 mm3, p < 0.05) at R + 90 days; 4.45 mm3 (95% CI -0.96 to 9.86 mm3, p = 0.12) at R + 180 days; and 7.21 mm3 (95% CI 1.82-12.60 mm3, p < 0.01) at R + 360 days. CONCLUSIONS: There was a consistent inward displacement of the globe at the optic nerve, which had only partially resolved 1 year after landing. More pronounced globe flattening has been observed in previous studies of astronauts; however, those observations lacked quantitative measures and were subjective in nature. The novel automated method described here allows for detailed quantification of structural changes in the posterior globe that may lead to an improved understanding of SANS.


Asunto(s)
Vuelo Espacial , Ingravidez , Astronautas , Humanos , Presión Intracraneal , Imagen por Resonancia Magnética , Ingravidez/efectos adversos
10.
JAMA Ophthalmol ; 138(5): 553-559, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32239198

RESUMEN

Importance: During long-duration spaceflights, nearly all astronauts exhibit some change in ocular structure within the spectrum of spaceflight-associated neuro-ocular syndrome. Objective: To quantitatively determine in a prospective study whether changes in ocular structures hypothesized to be associated with the development of spaceflight-associated neuro-ocular syndrome occur during 6-month missions on board the International Space Station (ISS). Design, Setting, and Participants: The Ocular Health ISS Study of astronauts is a longitudinal prospective cohort study that uses objective quantitative imaging modalities. The present cohort study investigated the ocular structure of 11 astronauts before, during, and after a 6-month mission on board the ISS. Main Outcomes and Measures: Changes in ocular structure (peripapillary edema, axial length, anterior chamber depth, and refraction) hypothesized to be associated with the development of spaceflight-associated neuro-ocular syndrome during 6-month missions on board the ISS were assessed. Statistical analyses were conducted from August 2018 to January 2019. Results: Before launch, the 11 astronauts were a mean (SD) age of 45 (5) years, a mean (SD) height of 1.76 (0.05) m, and a mean (SD) weight of 75.3 (7.1) kg. Six astronauts did not have prior spaceflight experience, 3 had completed short-duration missions on board the Space Shuttle, and 2 had previous long-duration spaceflight missions on board the ISS. Their mean (SD) duration on board the ISS in the present study was 170 (19) days. Optic nerve head rim tissue and peripapillary choroidal thickness increased from preflight values during early spaceflight, with maximal change typically near the end of the mission (mean change in optic nerve head rim tissue thickness on flight day 150: 35.7 µm; 95% CI, 28.5-42.9 µm; P < .001; mean choroidal thickness change on flight day 150: 43 µm; 95% CI, 35-46 µm; P < .001). The mean postflight axial length of the eye decreased by 0.08 mm (95% CI, 0.10-0.07 mm; P < .001) compared with preflight measures, and this change persisted through the last examination (1 year after spaceflight: 0.05 mm; 95% CI, 0.07-0.03 mm; P < .001). Conclusions and Relevance: This study found that spaceflight-associated peripapillary optic disc edema and choroid thickening were observed bilaterally and occurred in both sexes. In addition, this study documented substantial peripapillary choroid thickening during spaceflight, which has never been reported in a prospective study cohort population and which may be a contributing factor in spaceflight-associated neuro-ocular syndrome. Data collection on spaceflight missions longer than 6 months will help determine whether the duration of the mission is associated with exacerbating these observed changes in ocular structure or visual function.


Asunto(s)
Cámara Anterior/patología , Astronautas , Longitud Axial del Ojo/patología , Coroides/patología , Papiledema/etiología , Vuelo Espacial , Ingravidez/efectos adversos , Adulto , Cámara Anterior/diagnóstico por imagen , Segmento Anterior del Ojo/diagnóstico por imagen , Segmento Anterior del Ojo/patología , Longitud Axial del Ojo/diagnóstico por imagen , Biometría , Coroides/diagnóstico por imagen , Coroides/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Papiledema/diagnóstico por imagen , Papiledema/fisiopatología , Segmento Posterior del Ojo/diagnóstico por imagen , Segmento Posterior del Ojo/patología , Estudios Prospectivos , Factores de Tiempo , Tomografía de Coherencia Óptica
11.
Radiology ; 295(3): 640-648, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32286194

RESUMEN

Background Astronauts on long-duration spaceflight missions may develop changes in ocular structure and function, which can persist for years after the return to normal gravity. Chronic exposure to elevated intracranial pressure during spaceflight is hypothesized to be a contributing factor, however, the etiologic causes remain unknown. Purpose To investigate the intracranial effects of microgravity by measuring combined changes in intracranial volumetric parameters, pituitary morphologic structure, and aqueductal cerebrospinal fluid (CSF) hydrodynamics relative to spaceflight and to establish a comprehensive model of recovery after return to Earth. Materials and Methods This prospective longitudinal MRI study enrolled astronauts with planned long-duration spaceflight. Measures were conducted before spaceflight followed by 1, 30, 90, 180, and 360 days after landing. Intracranial volumetry and aqueductal CSF hydrodynamics (CSF peak-to-peak velocity amplitude and aqueductal stroke volume) were quantified for each phase. Qualitative and quantitative changes in pre- to postflight (day 1) pituitary morphologic structure were determined. Statistical analysis included separate mixed-effects models per dependent variable with repeated observations over time. Results Eleven astronauts (mean age, 45 years ± 5 [standard deviation]; 10 men) showed increased mean volumes in the brain (28 mL; P < .001), white matter (26 mL; P < .001), mean lateral ventricles (2.2 mL; P < .001), and mean summated brain and CSF (33 mL; P < .001) at postflight day 1 with corresponding increases in mean aqueductal stroke volume (14.6 µL; P = .045) and mean CSF peak-to-peak velocity magnitude (2.2 cm/sec; P = .01). Summated mean brain and CSF volumes remained increased at 360 days after spaceflight (28 mL; P < .001). Qualitatively, six of 11 (55%) astronauts developed or showed exacerbated pituitary dome depression compared with baseline. Average midline pituitary height decreased from 5.9 to 5.3 mm (P < .001). Conclusion Long-duration spaceflight was associated with increased pituitary deformation, augmented aqueductal cerebrospinal fluid (CSF) hydrodynamics, and expansion of summated brain and CSF volumes. Summated brain and CSF volumetric expansion persisted up to 1 year into recovery, suggesting permanent alteration. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Lev in this issue.


Asunto(s)
Astronautas , Encéfalo/diagnóstico por imagen , Presión del Líquido Cefalorraquídeo/fisiología , Presión Intracraneal/fisiología , Imagen por Resonancia Magnética , Vuelo Espacial , Simulación de Ingravidez , Adulto , Acueducto del Mesencéfalo/diagnóstico por imagen , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Hipófisis/diagnóstico por imagen , Estudios Prospectivos
12.
J Neuroimaging ; 29(3): 323-330, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30784130

RESUMEN

BACKGROUND AND PURPOSE: Assessment of the effects of microgravity on astronauts' brains using microstructural measures by utilizing quantitative MRI, before and after spaceflight would help understand the structural changes. METHODS: Quantitative MRI data sets in 19 astronauts were acquired before and after space missions. Both diffusion tensor metrics and volumetric measures were analyzed in the brain regions involved in the visual function. RESULTS: The fractional anisotropy was reduced in the right posterior thalamic radiations (P = .0009) and remained significant after a false discovery rate (FDR) correction (P = .03). A trend of increase in the mean diffusivities of different subregions of the occipital cortex on the right side, including calcarine, middle occipital, inferior occipital, and fusiform gyri, was noted and became insignificant after FDR correction. Similarly, there was a trend of cortical thinning involving the right occipital lobe and bilateral fusiform gyri, volume reduction of the left thalamus, and increase in lateral ventricular volume in the postflight scans. CONCLUSION: Gray and white matter alterations are detected by quantitative MRI before and after space flight. Our findings may be used to understand the neuroanatomical mechanisms of possible brain dysfunction or neuroplasticity in microgravity condition in the future studies.


Asunto(s)
Astronautas , Encéfalo/diagnóstico por imagen , Vuelo Espacial , Ingravidez , Sustancia Blanca/diagnóstico por imagen , Adulto , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos
13.
J Neurotrauma ; 36(11): 1738-1751, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30672379

RESUMEN

Pre-frontal limbic circuitry is vulnerable to effects of stress and injury. We examined microstructure of pre-frontal limbic circuitry after traumatic brain injury (TBI) or extracranial injury (EI) and its relation to post-traumatic stress symptoms (PTSS). Participants aged 8 to 15 years who sustained mild to severe TBI (n = 53) or EI (n = 26) in motor vehicle incidents were compared with healthy children (n = 38) in a prospective longitudinal study. At the seven-week follow-up, diffusion tensor imaging was obtained in all groups; injured children completed PTSS ratings using a validated scale. Using probabilistic diffusion tensor tractography, pathways were seeded from bilateral amygdalae and hippocampi to estimate the trajectory of white matter connecting them to each other and to targeted pre-frontal cortical (PFC) regions. Microstructure was estimated using fractional anisotropy (FA) in white matter and mean diffusivity (MD) in gray matter. Pre-frontal limbic microstructure was similar across groups, except for reduced FA in the right hippocampus to orbital PFC pathway in the injured versus healthy group. We examined microstructure of components of pre-frontal limbic circuitry with concurrently obtained PTSS cluster scores in the injured children. Neither microstructure nor PTSS scores differed significantly in the TBI and EI groups. Across PTSS factors, specific symptom clusters were related positively to higher FA and MD. Higher hyperarousal, avoidance, and re-experiencing symptoms were associated with higher FA in amygdala to pre-frontal and hippocampus to amygdala pathways. Higher hippocampal MD had a central role in hyperarousal and emotional numbing symptoms. Age moderated the relation of white and gray matter microstructure with hyperarousal scores. Our findings are consistent with models of traumatic stress that implicate disrupted top-down PFC and hippocampal moderation of overreactive subcortical threat arousal systems. Alterations in limbic pre-frontal circuitry and PTSS place children with either brain or body injuries at elevated risk for both current and future psychological health problems.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/psicología , Sistema Límbico/fisiopatología , Vías Nerviosas/fisiopatología , Trastornos por Estrés Postraumático/fisiopatología , Adolescente , Niño , Imagen de Difusión Tensora , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Estudios Prospectivos , Trastornos por Estrés Postraumático/etiología
14.
J Neuroimaging ; 29(2): 242-251, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30461106

RESUMEN

BACKGROUND AND PURPOSE: Ventricular enlargement in elderly raises a challenging differential diagnosis to physicians. While Alzheimer's disease is the most common form of dementia, idiopathic normal pressure hydrocephalus (iNPH) constitutes a potentially reversible syndrome. iNPH has a unique pathophysiology pertaining to cerebrospinal fluid (CSF) dynamics and periventricular white matter. We aimed to determine the effects of iNPH on periventricular white matter bundles and to further characterize its ventricular and sulcal CSF distribution by using diffusion tensor tractography (DTT) and CSF volumetrics on high resolution T1-weighted magnetic resonance imaging data. METHODS: Deterministic DTT and validated volumetric parcellation were performed on 20 healthy elderly, 13 Alzheimer's disease (AD), and 9 iNPH patients. The superior thalamic radiation, corticospinal tract, and dentatorubrothalamic tract were traced and quantified using DTI studio software. Cloud-based volumetric parcellation was also performed on 138 healthy subjects across the lifespan, 13 AD, and 9 iNPH-patients. Ventricular and sulcal CSF volumes in the three groups were compared. RESULTS: Combining increased mean diffusivity of the superior thalamic radiation with ventricular volume resulted in clear separation of iNPH from the AD and age-matched healthy subject groups. Additionally, ventricular to sulcal CSF ratio, utilizing fully automated methods, was significantly greater in the iNPH patients compared to AD and healthy age-matched controls. CONCLUSIONS: Combined microstructural (DTT) and macrostructural (ventricular volume) changes is a promising radiological approach in studying ventriculomegaly. Automated estimation of the disproportionate ventricular and sulcal CSF ratio in patients presenting with ventriculomegaly may be important as radiologic markers in differentiating iNPH from other causes of ventriculomegaly.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Hidrocéfalo Normotenso/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Diagnóstico Diferencial , Femenino , Humanos , Hidrocéfalo Normotenso/patología , Masculino , Persona de Mediana Edad , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/patología , Tálamo/patología , Sustancia Blanca/patología
15.
J Neuroimaging ; 28(3): 256-268, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29460455

RESUMEN

BACKGROUND AND PURPOSE: As part of its technological sophistication, the International Space Station (ISS) Program operates a robust medical surveillance schedule for its rotating 6-person crew to control the known health risks and to address knowledge gaps related to human health in space flight environment. Recent evidence on visual impairment in a subset of ISS crew has renewed the interest in the effects of long-duration space flight on the central nervous system (CNS). Through retrospective analysis in a sample of 10 healthy astronauts, we demonstrate the utility of multimodal quantitative magnetic resonance imaging (qMRI) with diffusion tensor imaging (DTI)-based customized brain templates to examine the structural attributes of various CNS compartments in this occupational group. METHODS: The study included 10 healthy astronauts (45-55 years). All subjects had previous space flights with the median duration of 110 days. Multimodal quantitative structural imaging modalities performed and used in analyses. RESULTS: A host of CNS features are presented, which are largely commensurate with the available normative data. Remarkably, some of our findings demonstrate statistically significant positive features suggestive of structural neuroplasticity conceivably associated with the professional activities of astronauts, and compensatory neurogenesis that counterweighs the expected normative volume loss with age. CONCLUSIONS: The novelty of this exploratory report is in the demonstration of a qMRI toolset as a potential capability for characterization and surveillance of unique professional groups, and for future prospective examinations of the effects of various long-term exposures on CNS.


Asunto(s)
Astronautas , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Imagen por Resonancia Magnética , Vuelo Espacial , Humanos , Persona de Mediana Edad
16.
NPJ Microgravity ; 3: 18, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28649640

RESUMEN

More than half of astronauts present with significant neuro-ophthalmic findings during 6-month missions onboard the International Space Station. Although the underlying cause of this Microgravity Ocular Syndrome is currently unknown, alterations in cerebrospinal fluid dynamics within the optic nerve sheath may play a role. In the presented study, diffusion tensor imaging was used to assess changes in diffusivity of the optic nerve and its surrounding sheath during head-down tilt, a ground-based model of microgravity. Nine healthy male subjects (mean age ± SD: 25 ± 2.4 years; mean body mass index ± SD: 24.1 ± 2.4 kg/m2) underwent 5 head-down tilt conditions: -6°,-12°, -18°,-12° and 1% CO2, and -12° and lower body negative pressure. Mean diffusivity, fractional anisotropy, axial diffusivity, radial diffusivity were quantified in the left and right optic nerves and surrounding sheaths at supine baseline and after 4.5 h head-down tilt for each condition. In the optic nerve sheath, mean diffusivity was increased with all head-down tilt conditions by (Best Linear Unbiased Predictors) 0.147 (SE: 0.04) × 10-3 mm2/s (P < 0.001), axial diffusivity by 0.188 (SE: 0.064) × 10-3 mm2/s (P < 0.001), and radial diffusivity by 0.126 (SE: 0.04) × 10-3 mm2/s (P = 0.0019). Within the optic nerve itself, fractional anisotropy was increased by 0.133 (SE: 0.047) (P = 0.0051) and axial diffusivity increased by 0.135 (SE: 0.08) × 10-3 mm2/s (P = 0.014) during head-down tilt, whilst mean diffusivity and radial diffusivity were unaffected (P > 0.3). These findings could be due to increased perioptic cerebral spinal fluid hydrodynamics during head-down tilt, as well as increased cerebral spinal fluid volume and movement within the optic nerve sheath.

17.
J Appl Physiol (1985) ; 122(5): 1155-1166, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28209740

RESUMEN

To improve the pathophysiological understanding of visual changes observed in astronauts, we aimed to use quantitative MRI to measure anatomic and physiological responses during a ground-based spaceflight analog (head-down tilt, HDT) combined with increased ambient carbon dioxide (CO2). Six healthy, male subjects participated in the double-blinded, randomized crossover design study with two conditions: 26.5 h of -12° HDT with ambient air and with 0.5% CO2, both followed by 2.5-h exposure to 3% CO2 Volume and mean diffusivity quantification of the lateral ventricle and phase-contrast flow sequences of the internal carotid arteries and cerebral aqueduct were acquired at 3 T. Compared with supine baseline, HDT (ambient air) resulted in an increase in lateral ventricular volume (P = 0.03). Cerebral blood flow, however, decreased with HDT in the presence of either ambient air or 0.5% CO2 (P = 0.002 and P = 0.01, respectively); this was partially reversed by acute 3% CO2 exposure. Following HDT (ambient air), exposure to 3% CO2 increased aqueductal cerebral spinal fluid velocity amplitude (P = 0.01) and lateral ventricle cerebrospinal fluid (CSF) mean diffusivity (P = 0.001). We concluded that HDT causes alterations in cranial anatomy and physiology that are associated with decreased craniospinal compliance. Brief exposure to 3% CO2 augments CSF pulsatility within the cerebral aqueduct and lateral ventricles.NEW & NOTEWORTHY Head-down tilt causes increased lateral ventricular volume and decreased cerebrovascular flow after 26.5 h. Additional short exposure to 3% ambient carbon dioxide levels causes increased cerebrovascular flow associated with increased cerebrospinal fluid pulsatility at the cerebral aqueduct. Head-down tilt with chronically elevated 0.5% ambient carbon dioxide and acutely elevated 3% ambient carbon dioxide causes increased mean diffusivity of cerebral spinal fluid within the lateral ventricles.


Asunto(s)
Circulación Cerebrovascular/fisiología , Inclinación de Cabeza/fisiología , Hipercapnia/fisiopatología , Adulto , Dióxido de Carbono , Arterias Carótidas/fisiología , Líquido Cefalorraquídeo/fisiología , Estudios Cruzados , Método Doble Ciego , Humanos , Hidrodinámica , Imagen por Resonancia Magnética/métodos , Masculino , Vuelo Espacial/métodos
18.
Brain Connect ; 6(3): 238-48, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26798959

RESUMEN

Spina bifida myelomeningocele (SBM) is commonly associated with anomalous development of the corpus callosum (CC) because of congenital partial hypogenesis and hydrocephalus-related hypoplasia. It represents a model disorder to examine the effects of early disruption of CC neurodevelopment and the plasticity of interhemispheric white matter connections. Diffusion tensor imaging was acquired on 76 individuals with SBM and 27 typically developing individuals, aged 8-36 years. Probabilistic tractography was used to isolate the interhemispheric connections between the posterior superior temporal lobes, which typically traverse the posterior third of the CC. Early disruption of CC development resulted in restructuring of interhemispheric connections through alternate commissures, particularly the anterior commissure (AC). These rerouted fibers were present in people with SBM and both CC hypoplasia and hypogenesis. In addition, microstructural integrity was reduced in the interhemispheric temporal tract in people with SBM, indexed by lower fractional anisotropy, axial diffusivity, and higher radial diffusivity. Interhemispheric temporal tract volume was positively correlated with total volume of the CC, such that more severe underdevelopment of the CC was associated with fewer connections between the posterior temporal lobes. Therefore, both the macrostructure and microstructure of this interhemispheric tract were reduced, presumably as a result of more extensive CC malformation. The current findings suggest that early disruption in CC development reroutes interhemispheric temporal fibers through both the AC and more anterior sections of the CC in support of persistent hypotheses that the AC may serve a compensatory function in atypical CC development.


Asunto(s)
Plasticidad Neuronal/fisiología , Disrafia Espinal/fisiopatología , Lóbulo Temporal/fisiopatología , Sustancia Blanca/fisiopatología , Adolescente , Adulto , Agenesia del Cuerpo Calloso/fisiopatología , Estudios de Casos y Controles , Niño , Cuerpo Calloso/fisiopatología , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Masculino , Meningomielocele , Fibras Nerviosas Mielínicas , Vías Nerviosas/fisiopatología
19.
Neuroradiol J ; 28(2): 133-6, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25923682

RESUMEN

We sought to report a central T2 hypointensity within the optic nerve on 3 T MRI studies obtained as part of the NASA Flight Medicine Visual Impairment Intracranial Pressure Protocol that had not been described previously. Twenty-one astronauts, who had undergone MRI of both orbits with direct coronal T2 sequences between 2010 and 2012, were retrospectively included. Two of the astronauts did not have previous exposure to microgravity at the time of their scans. A central T2 hypointensity was observed in 100% of both right and left eyes. It was completely visualized throughout the nerve course in 15 right eyes (71.4%) and in 19 left eyes (90.5%).We describe a new finding seen in all study participants: a central T2 hypointensity in the epicenter of the optic nerve. We speculate that this T2 hypointensity may represent flow voids caused by the central retinal vessels.


Asunto(s)
Astronautas , Imagen por Resonancia Magnética/métodos , Fibras Nerviosas Amielínicas/ultraestructura , Nervio Óptico/citología , Ingravidez , Humanos
20.
J Magn Reson Imaging ; 42(6): 1560-71, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25920095

RESUMEN

PURPOSE: To quantify the change in cerebral spinal fluid (CSF) production rate and maximum systolic velocity in astronauts before and after exposure to microgravity and identify any physiologic trend and/or risk factor related to intracranial hypertension. MATERIALS AND METHODS: Following Institutional Review Board (IRB) approval, with waiver of informed consent, a retrospective review of 27 astronauts imaged at 3T was done. Qualitative analysis was performed on T2 -weighted axial images through the orbits for degree of flattening of the posterior globe according to the following grades: 0 = none, 1 = mild, 2 = moderate, and 3 = severe. One grade level change postflight was considered significant for exposure to intracranial hypertension. CSF production rate and maximum systolic velocity was calculated from cine phase-contrast magnetic resonance imaging and compared to seven healthy controls. RESULTS: Fourteen astronauts were studied. The preflight CSF production rate in astronauts was similar to controls (P = 0.83). Six astronauts with significant posterior globe flattening demonstrated a 70% increase in CSF production rate postflight compared to baseline (P = 0.01). There was a significant increase in CSF maximum systolic velocity in the subgroup without posterior globe flattening (P = 0.01). CONCLUSION: The increased postflight CSF production rate in astronauts with positive flattening is compatible with the hypothesis of microgravity-induced intracranial hypertension inferring downregulation in CSF production in microgravity that is upregulated upon return to normal gravity. Increased postflight CSF maximum systolic velocity in astronauts with negative flattening suggests increased craniospinal compliance and a potential negative risk factor to microgravity-induced intracranial hypertension.


Asunto(s)
Astronautas , Líquido Cefalorraquídeo/fisiología , Hipertensión Intracraneal/etiología , Hipertensión Intracraneal/patología , Imagen por Resonancia Magnética/métodos , Ingravidez/efectos adversos , Biomarcadores/líquido cefalorraquídeo , Líquido Cefalorraquídeo/citología , Método Doble Ciego , Humanos , Hidrodinámica , Hipertensión Intracraneal/líquido cefalorraquídeo , Presión Intracraneal , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...