Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Am J Trop Med Hyg ; 109(6): 1329-1332, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37972332

RESUMEN

Jamestown Canyon virus (JCV) (Peribunyavirdae; Orthobunyavirus) is a mosquito-borne pathogen endemic to North America. The genome is composed of three segmented negative-sense RNA fragments designated as small, medium, and large. Jamestown Canyon virus is an emerging threat to public health, and infection in humans can cause severe neurological diseases, including encephalitis and meningitis. We report JCV mosquito surveillance data from 2001 to 2022 in New York state. Jamestown Canyon virus was detected in 12 mosquito species, with the greatest prevalence in Aedes canadensis and Anopheles punctipennis. Detection fluctuated annually, with the highest levels recorded in 2020. Overall, JCV infection rates were significantly greater from 2012 to 2022 compared with 2001 to 2011. Full-genome sequencing and phylogenetic analysis were also performed with representative JCV isolates collected from 2003 to 2022. These data demonstrated the circulation of numerous genetic variants, broad geographic separation, and the first identification of lineage B JCV in New York state in 2022.


Asunto(s)
Anopheles , Virus de la Encefalitis de California , Encefalitis de California , Animales , Humanos , Virus de la Encefalitis de California/genética , New York/epidemiología , Filogenia
2.
J Infect Dis ; 228(Suppl 6): S398-S413, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37849402

RESUMEN

Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.


Asunto(s)
Infecciones por Flavivirus , Flavivirus , Vacunas , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Infecciones por Flavivirus/prevención & control , Mosquitos Vectores , Infección por el Virus Zika/prevención & control
3.
Curr Biol ; 33(12): 2515-2527.e6, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37295427

RESUMEN

Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, similar to previous years, cases were driven by multiple independent but short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019, although the ecology of EEEV is complex and further data is required to explore these in more detail. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.


Asunto(s)
Culicidae , Virus de la Encefalitis Equina del Este , Encefalomielitis Equina , Pájaros Cantores , Animales , Caballos , Humanos , Virus de la Encefalitis Equina del Este/genética , Mosquitos Vectores , Encefalomielitis Equina/epidemiología , Encefalomielitis Equina/veterinaria , Massachusetts/epidemiología , Brotes de Enfermedades/veterinaria
4.
Proc Natl Acad Sci U S A ; 120(16): e2218012120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37040418

RESUMEN

Powassan virus is an emerging tick-borne virus of concern for public health, but very little is known about its transmission patterns and ecology. Here, we expanded the genomic dataset by sequencing 279 Powassan viruses isolated from Ixodes scapularis ticks from the northeastern United States. Our phylogeographic reconstructions revealed that Powassan virus lineage II was likely introduced or emerged from a relict population in the Northeast between 1940 and 1975. Sequences strongly clustered by sampling location, suggesting a highly focal geographical distribution. Our analyses further indicated that Powassan virus lineage II emerged in the northeastern United States mostly following a south-to-north pattern, with a weighted lineage dispersal velocity of ~3 km/y. Since the emergence in the Northeast, we found an overall increase in the effective population size of Powassan virus lineage II, but with growth stagnating during recent years. The cascading effect of population expansion of white-tailed deer and I. scapularis populations likely facilitated the emergence of Powassan virus in the northeastern United States.


Asunto(s)
Ciervos , Virus de la Encefalitis Transmitidos por Garrapatas , Ixodes , Animales , New England
5.
medRxiv ; 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36945576

RESUMEN

Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans, and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, like previous years, cases were driven by frequent short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.

6.
Parasit Vectors ; 16(1): 11, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635782

RESUMEN

BACKGROUND: West Nile virus (WNV) is the leading cause of mosquito-borne illness in the continental USA. WNV occurrence has high spatiotemporal variation, and current approaches to targeted control of the virus are limited, making forecasting a public health priority. However, little research has been done to compare strengths and weaknesses of WNV disease forecasting approaches on the national scale. We used forecasts submitted to the 2020 WNV Forecasting Challenge, an open challenge organized by the Centers for Disease Control and Prevention, to assess the status of WNV neuroinvasive disease (WNND) prediction and identify avenues for improvement. METHODS: We performed a multi-model comparative assessment of probabilistic forecasts submitted by 15 teams for annual WNND cases in US counties for 2020 and assessed forecast accuracy, calibration, and discriminatory power. In the evaluation, we included forecasts produced by comparison models of varying complexity as benchmarks of forecast performance. We also used regression analysis to identify modeling approaches and contextual factors that were associated with forecast skill. RESULTS: Simple models based on historical WNND cases generally scored better than more complex models and combined higher discriminatory power with better calibration of uncertainty. Forecast skill improved across updated forecast submissions submitted during the 2020 season. Among models using additional data, inclusion of climate or human demographic data was associated with higher skill, while inclusion of mosquito or land use data was associated with lower skill. We also identified population size, extreme minimum winter temperature, and interannual variation in WNND cases as county-level characteristics associated with variation in forecast skill. CONCLUSIONS: Historical WNND cases were strong predictors of future cases with minimal increase in skill achieved by models that included other factors. Although opportunities might exist to specifically improve predictions for areas with large populations and low or high winter temperatures, areas with high case-count variability are intrinsically more difficult to predict. Also, the prediction of outbreaks, which are outliers relative to typical case numbers, remains difficult. Further improvements to prediction could be obtained with improved calibration of forecast uncertainty and access to real-time data streams (e.g. current weather and preliminary human cases).


Asunto(s)
Culicidae , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Fiebre del Nilo Occidental/epidemiología , Salud Pública , Clima , Brotes de Enfermedades , Predicción
7.
Emerg Microbes Infect ; 12(1): 2155585, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36503411

RESUMEN

Powassan virus (POWV, family Flaviviridae) is a reemerging tick-borne virus endemic in North America and Russia. In 1997, a POWV-like agent was isolated from Ixodes scapularis in New England and determined to be genetically distinct from the original POWV isolate. This revealed the existence of two lineages: lineage 1, prototype Powassan virus (POWV-1) and lineage 2, deer tick virus (DTV). POWV-1 is thought to be primarily maintained in a cycle between I. cookei and woodchucks and I. marxi and squirrels, while DTV is primarily maintained in a cycle between I. scapularis and small mammal hosts. Recent tick, mammalian, and human isolates from New York State (NYS) have been identified as DTV, but for the first time in 45 years, we detected four POWV-1 isolates, including the first reported isolation of POWV-1 from I. scapularis. We aimed to investigate genotypic and phenotypic characteristics of recent NYS isolates through sequence analysis and evaluation of replication kinetics in vitro and in vivo. Our sequencing revealed genetic divergence between NYS POWV-1 isolates, with two distinct foci. We found that POWV-1 isolates displayed variable replication kinetics in nymphal ticks but not in cell culture. POWV-1 isolated from I. scapularis displayed increased fitness in experimentally infected I. scapularis as compared to historic and recent POWV-1 isolates from I. cookei. These data suggest the emergence of divergent POWV-1 strains in alternate tick hosts and maintenance of genetically and phenotypically discrete POWV-1 foci.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Ixodes , Animales , Humanos , Virus de la Encefalitis Transmitidos por Garrapatas/genética , New York/epidemiología , América del Norte , Federación de Rusia , Mamíferos
8.
Emerg Infect Dis ; 29(1): 145-148, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36573733

RESUMEN

In July 2019, Bourbon virus RNA was detected in an Amblyomma americanum tick removed from a resident of Long Island, New York, USA. Tick infection and white-tailed deer (Odocoileus virginianus) serosurvey results demonstrate active transmission in New York, especially Suffolk County, emphasizing a need for surveillance anywhere A. americanum ticks are reported.


Asunto(s)
Ciervos , Garrapatas , Animales , New York/epidemiología , Vectores Arácnidos
9.
Parasit Vectors ; 15(1): 226, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739573

RESUMEN

BACKGROUND: Jamestown Canyon virus (JCV; Peribunyaviridae, Orthobunyavirus) is a mosquito-borne pathogen belonging to the California serogroup. The virus is endemic in North America and increasingly recognized as a public health concern. In this study, we determined the vector competence of Anopheles (An.) quadrimaculatus and Aedes (Ae.) albopictus for five JCV strains belonging to the two lineages circulating in the Northeast. METHODS: An. quadrimaculatus and Ae. albopictus were fed blood meals containing two lineage A strains and three lineage B strains. Vector competence of both mosquito species was evaluated at 7- and 14-days post-feeding (dpf) by testing for virus presence in bodies, legs, and saliva. RESULTS: Our results demonstrated that Ae. albopictus mosquitoes are a competent vector for both lineages, with similar transmission levels for all strains tested. Variable levels of infection (46-83%) and dissemination (17-38%) were measured in An. quadrimaculatus, yet no transmission was detected for the five JCV strains evaluated. CONCLUSIONS: Our results demonstrate that establishment of Ae. albopictus in the Northeast could increase the risk of JCV but suggest An. quadrimaculatus are not a competent vector for JCV.


Asunto(s)
Aedes , Anopheles , Virus de la Encefalitis de California , Animales , Virus de la Encefalitis de California/genética , Mosquitos Vectores , New England
10.
Emerg Microbes Infect ; 11(1): 988-999, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35317702

RESUMEN

West Nile virus (WNV; Flavivirus, Flaviviridae) was introduced to New York State (NYS) in 1999 and rapidly expanded its range through the continental United States (US). Apart from the displacement of the introductory NY99 genotype with the WN02 genotype, there has been little evidence of adaptive evolution of WNV in the US. WNV NY10, characterized by shared amino acid substitutions R1331K and I2513M, emerged in 2010 coincident with increased WNV cases in humans and prevalence in mosquitoes. Previous studies demonstrated an increase in frequency of NY10 strains in NYS and evidence of positive selection. Here, we present updated surveillance and sequencing data for WNV in NYS and investigate if NY10 genotype strains are associated with phenotypic change consistent with an adaptive advantage. Results confirm a significant increase in prevalence in mosquitoes though 2018, and updated sequencing demonstrates a continued dominance of NY10. We evaluated NY10 strains in Culex pipiens mosquitoes to assess vector competence and found that the NY10 genotype is associated with both increased infectivity and transmissibility. Experimental infection of American robins (Turdus migratorius) was additionally completed to assess viremia kinetics of NY10 relative to WN02. Modelling the increased infectivity and transmissibility of the NY10 strains together with strain-specific viremia demonstrates a mechanistic basis for selection that has likely contributed to the increased prevalence of WNV in NYS.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Mosquitos Vectores , New York/epidemiología , Prevalencia , Virus del Nilo Occidental/genética
11.
Emerg Microbes Infect ; 11(1): 741-748, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35179429

RESUMEN

We report surveillance results of Cache Valley virus (CVV; Peribunyaviridae, Orthobunyavirus) from 2017 to 2020 in New York State (NYS). Infection rates were calculated using the maximum likelihood estimation (MLE) method by year, region, and mosquito species. The highest infection rates were identified among Anopheles spp. mosquitoes and we detected the virus in Aedes albopictus for the first time in NYS. Based on our previous Anopheles quadrimaculatus vector competence results for nine CVV strains, we selected among them three stains for further characterization. These include two CVV reassortants (PA and 15041084) and one CVV lineage 2 strain (Hu-2011). We analyzed full genomes, compared in vitro growth kinetics and assessed vector competence of Aedes albopictus. Sequence analysis of the two reassortant strains (PA and 15041084) revealed 0.3%, 0.4%, and 0.3% divergence; and 1, 10, and 6 amino acid differences for the S, M, and L segments, respectively. We additionally found that the PA strain was attenuated in vertebrate (Vero) and mosquito (C6/36) cell culture. Furthemore, Ae. albopictus mosquitoes are competent vectors for CVV Hu-2011 (16.7-62.1% transmission rates) and CVV 15041084 (27.3-48.0% transmission rates), but not for the human reassortant (PA) isolate, which did not disseminate from the mosquito midgut. Together, our results demonstrate significant phenotypic variability among strains and highlight the capacity for Ae. albopictus to act as a vector of CVV.


Asunto(s)
Aedes , Virus Bunyamwera , Animales , Virus Bunyamwera/genética , Vectores de Enfermedades , Humanos , Mosquitos Vectores , New York
12.
Proc Biol Sci ; 289(1969): 20212087, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35193398

RESUMEN

Predicting pathogen emergence and spillover risk requires understanding the determinants of a pathogens' host range and the traits involved in host competence. While host competence is often considered a fixed species-specific trait, it may be variable if pathogens diversify across hosts. Balancing selection can lead to maintenance of pathogen polymorphisms (multiple-niche-polymorphism; MNP). The causative agent of Lyme disease, Borrelia burgdorferi (Bb), provides a model to study the evolution of host adaptation, as some Bb strains defined by their outer surface protein C (ospC) genotype, are widespread in white-footed mice and others are associated with non-rodent vertebrates (e.g. birds). To identify the mechanisms underlying potential strain × host adaptation, we infected American robins and white-footed mice, with three Bb strains of different ospC genotypes. Bb burdens varied by strain in a host-dependent fashion, and strain persistence in hosts largely corresponded to Bb survival at early infection stages and with transmission to larvae (i.e. fitness). Early survival phenotypes are associated with cell adhesion, complement evasion and/or inflammatory and antibody-mediated removal of Bb, suggesting directional selective pressure for host adaptation and the potential role of MNP in maintaining OspC diversity. Our findings will guide future investigations to inform eco-evolutionary models of host adaptation for microparasites.


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Enfermedad de Lyme , Animales , Borrelia burgdorferi/genética , Grupo Borrelia Burgdorferi/genética , Adaptación al Huésped , Peromyscus , Fenotipo
13.
Emerg Infect Dis ; 28(2): 303-313, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35075998

RESUMEN

Cache Valley virus (CVV) is a mosquitoborne virus that infects livestock and humans. We report results of surveillance for CVV in New York, USA, during 2000-2016; full-genome analysis of selected CVV isolates from sheep, horse, humans, and mosquitoes from New York and Canada; and phenotypic characterization of selected strains. We calculated infection rates by using the maximum-likelihood estimation method by year, region, month, and mosquito species. The highest maximum-likelihood estimations were for Anopheles spp. mosquitoes. Our phylogenetic analysis identified 2 lineages and found evidence of segment reassortment. Furthermore, our data suggest displacement of CVV lineage 1 by lineage 2 in New York and Canada. Finally, we showed increased vector competence of An. quadrimaculatus mosquitoes for lineage 2 strains of CVV compared with lineage 1 strains.


Asunto(s)
Anopheles , Virus Bunyamwera , Animales , Virus Bunyamwera/genética , Caballos , Mosquitos Vectores , New York/epidemiología , Filogenia , Ovinos
15.
Parasit Vectors ; 14(1): 573, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772442

RESUMEN

BACKGROUND: Vector-borne pathogens must survive and replicate in the hostile environment of an insect's midgut before successful dissemination. Midgut microbiota interfere with pathogen infection by activating the basal immunity of the mosquito and by synthesizing pathogen-inhibitory metabolites. METHODS: The goal of this study was to assess the influence of Zika virus (ZIKV) infection and increased temperature on Aedes albopictus midgut microbiota. Aedes albopictus were reared at diurnal temperatures of day 28 °C/night 24 °C (L) or day 30 °C/night 26 °C (M). The mosquitoes were given infectious blood meals with 2.0 × 108 PFU/ml ZIKV, and 16S rRNA sequencing was performed on midguts at 7 days post-infectious blood meal exposure. RESULTS: Our findings demonstrate that Elizabethkingia anophelis albopictus was associated with Ae. albopictus midguts exposed to ZIKV infectious blood meal. We observed a negative correlation between ZIKV and E. anophelis albopictus in the midguts of Ae. albopictus. Supplemental feeding of Ae. albopictus with E. anophelis aegypti and ZIKV resulted in reduced ZIKV infection rates. Reduced viral loads were detected in Vero cells that were sequentially infected with E. anophelis aegypti and ZIKV, dengue virus (DENV), or chikungunya virus (CHIKV). CONCLUSIONS: Our findings demonstrate the influence of ZIKV infection and temperature on the Ae. albopictus microbiome along with a negative correlation between ZIKV and E. anophelis albopictus. Our results have important implications for controlling vector-borne pathogens.


Asunto(s)
Aedes/microbiología , Aedes/virología , Flavobacteriaceae/fisiología , Mosquitos Vectores/microbiología , Mosquitos Vectores/virología , Virus Zika/fisiología , Animales , Flavobacteriaceae/genética , Humanos , Temperatura , Virus Zika/genética , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología
16.
Emerg Infect Dis ; 27(12): 3128-3132, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34648421

RESUMEN

During 2018, Heartland virus RNA was detected in an Amblyomma americanum tick removed from a resident of Suffolk County, New York, USA. The person showed seroconversion. Tick surveillance and white-tailed deer (Odocoileus virginianus) serosurveys showed widespread distribution in Suffolk County, emphasizing a need for disease surveillance anywhere A. americanum ticks are established or emerging.


Asunto(s)
Ciervos , Phlebovirus , Garrapatas , Animales , Humanos , New York/epidemiología
17.
Viruses ; 13(10)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34696323

RESUMEN

West Nile virus (WNV, Flaviviridae, Flavivirus) is a mosquito-borne flavivirus introduced to North America in 1999. Since 1999, the Earth's average temperature has increased by 0.6 °C. Mosquitoes are ectothermic organisms, reliant on environmental heat sources. Temperature impacts vector-virus interactions which directly influence arbovirus transmission. RNA viral replication is highly error-prone and increasing temperature could further increase replication rates, mutation frequencies, and evolutionary rates. The impact of temperature on arbovirus evolutionary trajectories and fitness landscapes has yet to be sufficiently studied. To investigate how temperature impacts the rate and extent of WNV evolution in mosquito cells, WNV was experimentally passaged 12 times in Culex tarsalis cells, at 25 °C and 30 °C. Full-genome deep sequencing was used to compare genetic signatures during passage, and replicative fitness was evaluated before and after passage at each temperature. Our results suggest adaptive potential at both temperatures, with unique temperature-dependent and lineage-specific genetic signatures. Further, higher temperature passage was associated with significantly increased replicative fitness at both temperatures and increases in nonsynonymous mutations. Together, these data indicate that if similar selective pressures exist in natural systems, increases in temperature could accelerate emergence of high-fitness strains with greater phenotypic plasticity.


Asunto(s)
Adaptación Fisiológica/genética , Culicidae/virología , Evolución Molecular Dirigida/métodos , Variación Genética , Interacciones Microbiota-Huesped , Calor , Virus del Nilo Occidental/genética , Animales , Culicidae/citología , Mosquitos Vectores/virología , ARN Viral/genética , Replicación Viral/genética , Replicación Viral/fisiología , Fiebre del Nilo Occidental/transmisión , Fiebre del Nilo Occidental/virología
18.
PLoS Pathog ; 17(7): e1009801, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34324600

RESUMEN

Pathogens possess the ability to adapt and survive in some host species but not in others-an ecological trait known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. Three main causative agents of LD, Borrelia burgdorferi, B. afzelii, and B. garinii, vary in host ranges through mechanisms eluding characterization. By feeding ticks infected with different Borrelia species, utilizing feeding chambers and live mice and quail, we found species-level differences in bacterial transmission. These differences localize on the tick blood meal, and specifically complement, a defense in vertebrate blood, and a polymorphic bacterial protein, CspA, which inactivates complement by binding to a host complement inhibitor, Factor H (FH). CspA selectively confers bacterial transmission to vertebrates that produce FH capable of allele-specific recognition. CspA is the only member of the Pfam54 gene family to exhibit host-specific FH-binding. Phylogenetic analyses revealed convergent evolution as the driver of such uniqueness, and that FH-binding likely emerged during the last glacial maximum. Our results identify a determinant of host tropism in Lyme disease infection, thus defining an evolutionary mechanism that shapes host-pathogen associations.


Asunto(s)
Proteínas Bacterianas/genética , Borrelia burgdorferi/crecimiento & desarrollo , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/transmisión , Tropismo Viral/fisiología , Animales , Proteínas Bacterianas/metabolismo , Evolución Biológica , Borrelia burgdorferi/genética , Borrelia burgdorferi/inmunología , Factor H de Complemento/metabolismo , Interacciones Huésped-Patógeno/fisiología , Humanos , Evasión Inmune/fisiología , Ratones , Codorniz , Especificidad de la Especie , Garrapatas
19.
Viruses ; 13(6)2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073485

RESUMEN

West Nile virus (WNV) has never been reported from Lebanon. Yet, this country is located on the flyway of migratory birds in the Middle East region. Serological screening was conducted to assess the potential circulation of this virus. Human, horse, and chicken sera were collected from the Bekaa and North districts. Specific IgG and IgY were first screened by ELISA. Then, positive samples were confirmed by plaque reduction neutralization test (PRNT). Besides this, adult mosquitoes were collected and tested for the presence of WNV RNA using conventional RT-PCR. Sera screening revealed a seroprevalence rate reaching 1.86% among humans and 2.47% among horses. Cross-reactions revealed by ELISA suggested the circulation of flaviviruses other than WNV. None of the tested mosquitoes was positive for WNV. The observed results constitute strong evidence of local exposure of the Lebanese population to this virus and the first report of equine WNV in Lebanon.


Asunto(s)
Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Ensayo de Inmunoadsorción Enzimática , Geografía Médica , Humanos , Líbano/epidemiología , Tamizaje Masivo , Pruebas de Neutralización , Vigilancia en Salud Pública , Estudios Seroepidemiológicos , Virus del Nilo Occidental/clasificación , Virus del Nilo Occidental/inmunología
20.
Virology ; 561: 58-64, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34147955

RESUMEN

Pathogens are transmitted from one host to another either by vertical transmission (VT) or horizontal transmission (HT). Mosquito-borne arboviruses (arthropod-borne viruses), including several clinically important viruses such as dengue, Zika, West Nile and chikungunya viruses persist in nature by both VT and HT. VT may also serve as an essential link in the transmission cycle during adverse environmental conditions. VT rates (VTRs) vary between virus families and even among viruses within the same genus. The mechanism behind these differences in VTRs among viruses is poorly understood. For efficient VT to occur, viruses must infect the mosquito germline. Here, we show that Zika virus infects mosquito ovaries and is transmitted vertically at a low rate. The infected progeny derive from mosquitoes with infected ovaries. The prevalence of ovary infection increases after a second non-infectious blood meal following an infectious blood meal.


Asunto(s)
Aedes/virología , Virus Zika/fisiología , Animales , Línea Celular , Femenino , Ovario/virología , Ensayo de Placa Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA