Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry ; 91(12): 1029-1038, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34715992

RESUMEN

BACKGROUND: Cocaine-associated environments (i.e., contexts) evoke persistent memories of cocaine reward and thereby contribute to the maintenance of addictive behavior in cocaine users. From a therapeutic perspective, enhancing inhibitory control over cocaine-conditioned responses is of pivotal importance but requires a more detailed understanding of the neural circuitry that can suppress context-evoked cocaine memories, e.g., through extinction learning. The ventral medial prefrontal cortex (vmPFC) and dorsal medial prefrontal cortex (dmPFC) are thought to bidirectionally regulate responding to cocaine cues through their projections to other brain regions. However, whether these mPFC subregions interact to enable adaptive responding to cocaine-associated contextual stimuli has remained elusive. METHODS: We used antero- and retrograde tracing combined with chemogenetic intervention to examine the role of vmPFC-to-dmPFC projections in extinction of cocaine-induced place preference in mice. In addition, electrophysiological recordings and optogenetics were used to determine whether parvalbumin-expressing inhibitory interneurons and pyramidal neurons in the dmPFC are innervated by vmPFC projections. RESULTS: We found that vmPFC-to-dmPFC projecting neurons are activated during unreinforced re-exposure to a cocaine-associated context, and selective suppression of these cells impairs extinction learning. Parvalbumin-expressing inhibitory interneurons in the dmPFC receive stronger monosynaptic excitatory input from vmPFC projections than local dmPFC pyramidal neurons, consequently resulting in disynaptic inhibition of pyramidal neurons. In line with this, we show that chemogenetic suppression of dmPFC parvalbumin-expressing inhibitory interneurons impairs extinction learning. CONCLUSIONS: Our data reveal that vmPFC projections mediate extinction of a cocaine-associated contextual memory through recruitment of feed-forward inhibition in the dmPFC, thereby providing a novel neuronal substrate that promotes extinction-induced inhibitory control.


Asunto(s)
Cocaína , Animales , Cocaína/farmacología , Extinción Psicológica/fisiología , Ratones , Parvalbúminas , Corteza Prefrontal/fisiología , Recompensa
2.
Front Mol Neurosci ; 13: 88, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528248

RESUMEN

Changes in excitation and inhibition are associated with the pathobiology of neurodevelopmental disorders of intellectual disability and autism and are widely described in Fragile X syndrome (FXS). In the prefrontal cortex (PFC), essential for cognitive processing, excitatory connectivity and plasticity are found altered in the FXS mouse model, however, little is known about the state of inhibition. To that end, we investigated GABAergic signaling in the Fragile X Mental Retardation 1 (FMR1) knock out (Fmr1-KO) mouse medial PFC (mPFC). We report changes at the molecular, and functional levels of inhibition at three (prepubescence) and six (adolescence) postnatal weeks. Functional changes were most prominent during early postnatal development, resulting in stronger inhibition, through increased synaptic inhibitory drive and amplitude, and reduction of inhibitory short-term synaptic depression. Noise analysis of prepubescent post-synaptic currents demonstrated an increased number of receptors opening during peak current in Fmr1-KO inhibitory synapses. During adolescence amplitudes and plasticity changes normalized, however, the inhibitory drive was now reduced in Fmr1-KO, while synaptic kinetics were prolonged. Finally, adolescent GABAA receptor subunit α2 and GABAB receptor subtype B1 expression levels were different in Fmr1-KOs than WT littermate controls. Together these results extend the degree of synaptic GABAergic alterations in FXS, now to the mPFC of Fmr1-KO mice, a behaviourally relevant brain region in neurodevelopmental disorder pathology.

3.
Front Cell Neurosci ; 13: 465, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31749686

RESUMEN

G-protein-coupled receptor 158 (Gpr158) is highly expressed in striatum, hippocampus and prefrontal cortex. It gained attention as it was implicated in physiological responses to stress and depression. Recently, Gpr158 has been shown to act as a pathway-specific synaptic organizer in the hippocampus, required for proper mossy fiber-CA3 neurocircuitry establishment, structure, and function. Although rodent Gpr158 expression is highest in CA3, considerable expression occurs in CA1 especially after the first postnatal month. Here, we combined hippocampal-dependent behavioral paradigms with subsequent electrophysiological and morphological analyses from the same group of mice to assess the effects of Gpr158 deficiency on CA1 physiology and function. We demonstrate deficits in spatial memory acquisition and retrieval in the Morris water maze paradigm, along with deficits in the acquisition of extinction memory in the passive avoidance test in Gpr158 KO mice. Electrophysiological recordings from CA1 pyramidal neurons revealed normal basal excitatory and inhibitory synaptic transmission, however, Schaffer collateral stimulation yielded dramatically reduced post-synaptic currents. Interestingly, intrinsic excitability of CA1 pyramidals was found increased, potentially acting as a compensatory mechanism to the reductions in Schaffer collateral-mediated drive. Both ex vivo and in vitro, neurons deficient for or with lowered levels of Gpr158 exhibited robust reductions in dendritic architecture and complexity, i.e., reduced length, surface, bifurcations, and branching. This effect was localized in the apical but not basal dendrites of adult CA1 pyramidals, indicative of compartment-specific alterations. A significant positive correlation between spatial memory acquisition and extent of complexity of CA1 pyramidals was found. Taken together, we provide first evidence of significant disruptions in hippocampal CA1 neuronal dendritic architecture and physiology, driven by Gpr158 deficiency. Importantly, the hippocampal neuronal morphology deficits appear to support the impairments in spatial memory acquisition observed in Gpr158 KO mice.

4.
Front Cell Neurosci ; 13: 315, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354435

RESUMEN

Group I metabotropic glutamate receptors (mGluRs) mediate a range of signaling and plasticity processes in the brain and are of growing importance as potential therapeutic targets in clinical trials for neuropsychiatric and neurodevelopmental disorders (NDDs). Fundamental knowledge regarding the functional effects of mGluRs upon pyramidal neurons and interneurons is derived largely from rodent brain, and their effects upon human neurons are predominantly untested. We therefore addressed how group I mGluRs affect microcircuits in human neocortex. We show that activation of group I mGluRs elicits action potential firing in Martinotti cells, which leads to increased synaptic inhibition onto neighboring neurons. Some other interneurons, including fast-spiking interneurons, are depolarized but do not fire action potentials in response to group I mGluR activation. Furthermore, we confirm the existence of group I mGluR-mediated depression of excitatory synapses in human pyramidal neurons. We propose that the strong increase in inhibition and depression of excitatory synapses onto layer 2/3 pyramidal neurons upon group I mGluR activation likely results in a shift in the balance between excitation and inhibition in the human cortical network.

5.
Nat Commun ; 10(1): 2315, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31127098

RESUMEN

Encoding and retrieval of contextual memories is initially mediated by sparsely activated neurons, so-called engram cells, in the hippocampus. Subsequent memory persistence is thought to depend on network-wide changes involving progressive contribution of cortical regions, a process referred to as systems consolidation. Using a viral-based TRAP (targeted recombination in activated populations) approach, we studied whether consolidation of contextual fear memory by neurons in the medial prefrontal cortex (mPFC) is modulated by memory strength and CREB function. We demonstrate that activity of a small subset of mPFC neurons is sufficient and necessary for remote memory expression, but their involvement depends on the strength of conditioning. Furthermore, selective disruption of CREB function in mPFC engram cells after mild conditioning impairs remote memory expression. Together, our data demonstrate that memory consolidation by mPFC engram cells requires CREB-mediated transcription, with the functionality of this network hub being gated by memory strength.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Miedo/fisiología , Consolidación de la Memoria/fisiología , Memoria a Largo Plazo/fisiología , Corteza Prefrontal/fisiología , Animales , Conducta Animal/fisiología , Condicionamiento Psicológico/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Dependovirus/genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Microinyecciones , Modelos Animales , Neuronas/metabolismo , Técnicas de Placa-Clamp , Corteza Prefrontal/citología , Técnicas Estereotáxicas
6.
Handb Clin Neurol ; 150: 319-333, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29496151

RESUMEN

Recordings from fresh human brain slices derived from surgically resected brain tissue are being used to unravel mechanisms underlying human neurophysiology and for the evaluation of potential therapeutic targets and compounds. Data resulting from these studies provide unique insights into physiologic properties of human neuronal microcircuits. However, substantial limitations still remain with this approach. First, the tissue is always resected from patients, never from healthy controls. Second, the patient population undergoing brain surgery with tissue resection is limited to epilepsy and tumor patients - never from patients with other neurologic disorders. Third, the vast majority of tissue resected is limited largely to temporal cortex and hippocampus, occasionally amygdala. Therefore, the possibility to study brain tissue: (1) from healthy controls; (2) from patients with different neuropathologies; (3) from different brain areas; and (4) from a wide spectrum of ages only exists through autopsy-derived brain tissue. Here we describe methods and results from physiologic recordings of adult human neurons and microcircuits in both surgically derived brain tissue as well as in tissue derived from autopsies. We define postmortem time windows during which physiologic recordings could match data obtained from surgical tissue.


Asunto(s)
Potenciales de Acción/fisiología , Encéfalo/citología , Neuronas/fisiología , Cambios Post Mortem , Anciano , Anciano de 80 o más Años , Encéfalo/cirugía , Muerte , Electrofisiología , Femenino , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad
7.
Sci Transl Med ; 9(421)2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29263233

RESUMEN

Patients with depression often suffer from cognitive impairments that contribute to disease burden. We used social defeat-induced persistent stress (SDPS) to induce a depressive-like state in rats and then studied long-lasting memory deficits in the absence of acute stressors in these animals. The SDPS rat model showed reduced short-term object location memory and maintenance of long-term potentiation (LTP) in CA1 pyramidal neurons of the dorsal hippocampus. SDPS animals displayed increased expression of synaptic chondroitin sulfate proteoglycans in the dorsal hippocampus. These effects were abrogated by a 3-week treatment with the antidepressant imipramine starting 8 weeks after the last defeat encounter. Next, we observed an increase in the number of perineuronal nets (PNNs) surrounding parvalbumin-expressing interneurons and a decrease in the frequency of inhibitory postsynaptic currents (IPSCs) in the hippocampal CA1 region in SDPS animals. In vivo breakdown of the hippocampus CA1 extracellular matrix by the enzyme chondroitinase ABC administered intracranially restored the number of PNNs, LTP maintenance, hippocampal inhibitory tone, and memory performance on the object place recognition test. Our data reveal a causal link between increased hippocampal extracellular matrix and the cognitive deficits associated with a chronic depressive-like state in rats exposed to SDPS.


Asunto(s)
Disfunción Cognitiva/patología , Depresión/patología , Matriz Extracelular/metabolismo , Hipocampo/patología , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/fisiopatología , Condroitina ABC Liasa/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Enfermedad Crónica , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/fisiopatología , Depresión/complicaciones , Depresión/tratamiento farmacológico , Depresión/fisiopatología , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Imipramina/farmacología , Imipramina/uso terapéutico , Interneuronas/efectos de los fármacos , Interneuronas/patología , Masculino , Memoria/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Ratas Wistar , Conducta Social , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/etiología , Estrés Psicológico/fisiopatología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
8.
Front Behav Neurosci ; 7: 172, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24312033

RESUMEN

Attentional deficits and executive function impairments are common to many neurodevelopmental disorders of intellectual disability and autism, including Fragile X syndrome (FXS). In the knockout mouse model for FXS, significant changes in synaptic plasticity and connectivity are found in the prefrontal cortex (PFC)-a prominent region for attentional processing and executive control. Given these alterations in PFC synaptic function, we tested whether adult Fragile X knockout mice exhibited corresponding impairments in inhibitory control, perseveration, and sustained attention. Furthermore, we investigated individual performance during attentional rule acquisition. Using the 5-choice serial reaction time task, our results show no impairments in inhibitory control and sustained attention. Fragile X knockout mice exhibited enhanced levels of correct and incorrect responding, as well as perseveration of responding during initial phases of rule acquisition, that normalized with training. For both knockout and wild type mice, pharmacological attenuation of metabotropic glutamate receptor 5 signaling did not affect response accuracy but reduced impulsive responses and increased omission errors. Upon rule reversal, Fragile X knockout mice made more correct and incorrect responses, similar to the initial phases of rule acquisition. Analogous to heightened activity upon novel rule acquisition, Fragile X knockout mice were transiently hyperactive in both a novel open field (OF) arena and novel home cage. Hyperactivity ceased with familiarization to the environment. Our findings demonstrate normal inhibitory control and sustained attention but heightened perseveration, responding, and hyperactivity during novel rule acquisition and during exposure to novel environments in Fragile X knockout mice. We therefore provide evidence for subtle but significant differences in the processing of novel stimuli in the mouse model for the FXS.

9.
Trends Neurosci ; 35(6): 335-44, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22542246

RESUMEN

Many neurodevelopmental disorders (NDDs) are characterized by age-dependent symptom onset and regression, particularly during early postnatal periods of life. The neurobiological mechanisms preceding and underlying these developmental cognitive and behavioral impairments are, however, not clearly understood. Recent evidence using animal models for monogenic NDDs demonstrates the existence of time-regulated windows of neuronal and synaptic impairments. We propose that these developmentally-dependent impairments can be unified into a key concept: namely, time-restricted windows for impaired synaptic phenotypes exist in NDDs, akin to critical periods during normal sensory development in the brain. Existence of sensitive time-windows has significant implications for our understanding of early brain development underlying NDDs and may indicate vulnerable periods when the brain is more susceptible to current therapeutic treatments.


Asunto(s)
Envejecimiento , Encefalopatías/fisiopatología , Encéfalo/fisiopatología , Trastornos del Conocimiento/fisiopatología , Discapacidades del Desarrollo/fisiopatología , Modelos Neurológicos , Factores de Tiempo , Animales , Susceptibilidad a Enfermedades/fisiopatología , Humanos
10.
Nat Neurosci ; 13(2): 163-72, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20062052

RESUMEN

Tuberous sclerosis complex is a disease caused by mutations in the TSC1 or TSC2 genes, which encode a protein complex that inhibits mTOR kinase signaling by inactivating the Rheb GTPase. Activation of mTOR promotes the formation of benign tumors in various organs and the mechanisms underlying the neurological symptoms of the disease remain largely unknown. We found that Tsc2 haploinsufficiency in mice caused aberrant retinogeniculate projections that suggest defects in EphA receptor-dependent axon guidance. We also found that EphA receptor activation by ephrin-A ligands in neurons led to inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) activity and decreased inhibition of Tsc2 by ERK1/2. Thus, ephrin stimulation inactivates the mTOR pathway by enhancing Tsc2 activity. Furthermore, Tsc2 deficiency and hyperactive Rheb constitutively activated mTOR and inhibited ephrin-induced growth cone collapse. Our results indicate that TSC2-Rheb-mTOR signaling cooperates with the ephrin-Eph receptor system to control axon guidance in the visual system.


Asunto(s)
Axones/fisiología , Movimiento Celular/fisiología , Efrina-A1/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Neuropéptidos/metabolismo , Receptores de la Familia Eph/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Conos de Crecimiento/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Transgénicos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuronas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro , Ratas , Retina/fisiología , Células Ganglionares de la Retina/fisiología , Transducción de Señal , Serina-Treonina Quinasas TOR , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Vías Visuales/fisiología
11.
J Neurosci ; 29(18): 5926-37, 2009 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-19420259

RESUMEN

Tuberous sclerosis complex (TSC) is a neurogenetic disorder caused by loss-of-function mutations in either the TSC1 or TSC2 genes and frequently results in prominent CNS manifestations, including epilepsy, mental retardation, and autism spectrum disorder. The TSC1/TSC2 protein complex plays a major role in controlling the Ser/Thr kinase mammalian target of rapamycin (mTOR), which is a master regulator of protein synthesis and cell growth. In this study, we show that endoplasmic reticulum (ER) stress regulates TSC1/TSC2 complex to limit mTOR activity. In addition, Tsc2-deficient rat hippocampal neurons and brain lysates from a Tsc1-deficient mouse model demonstrate both elevated ER and oxidative stress. In Tsc2-deficient neurons, the expression of stress markers such as CHOP and HO-1 is increased, and this increase is completely reversed by the mTOR inhibitor rapamycin both in vitro and in vivo. Neurons lacking a functional TSC1/TSC2 complex have increased vulnerability to ER stress-induced cell death via the activation of the mitochondrial death pathway. Importantly, knockdown of CHOP reduces oxidative stress and apoptosis in Tsc2-deficient neurons. These observations indicate that ER stress modulates mTOR activity through the TSC protein complex and that ER stress is elevated in cells lacking this complex. They also suggest that some of the neuronal dysfunction and neurocognitive deficits seen in TSC patients may be attributable to ER and oxidative stress and therefore potentially responsive to agents moderating these pathways.


Asunto(s)
Proteínas Portadoras/metabolismo , Neuronas/fisiología , Estrés Oxidativo/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa/patología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Células Cultivadas , Preescolar , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Citometría de Flujo/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hemo-Oxigenasa 1/metabolismo , Hipocampo/citología , Humanos , Lactonas/farmacología , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , ARN Interferente Pequeño/farmacología , Especies Reactivas de Oxígeno/metabolismo , Serina/metabolismo , Sesquiterpenos/farmacología , Serina-Treonina Quinasas TOR , Treonina/metabolismo , Factores de Tiempo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Transducción Genética/métodos , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Tunicamicina/farmacología
12.
Science ; 322(5903): 963-6, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18988856

RESUMEN

The failure of axons to regenerate is a major obstacle for functional recovery after central nervous system (CNS) injury. Removing extracellular inhibitory molecules results in limited axon regeneration in vivo. To test for the role of intrinsic impediments to axon regrowth, we analyzed cell growth control genes using a virus-assisted in vivo conditional knockout approach. Deletion of PTEN (phosphatase and tensin homolog), a negative regulator of the mammalian target of rapamycin (mTOR) pathway, in adult retinal ganglion cells (RGCs) promotes robust axon regeneration after optic nerve injury. In wild-type adult mice, the mTOR activity was suppressed and new protein synthesis was impaired in axotomized RGCs, which may contribute to the regeneration failure. Reactivating this pathway by conditional knockout of tuberous sclerosis complex 1, another negative regulator of the mTOR pathway, also leads to axon regeneration. Thus, our results suggest the manipulation of intrinsic growth control pathways as a therapeutic approach to promote axon regeneration after CNS injury.


Asunto(s)
Axones/fisiología , Proteínas Portadoras/metabolismo , Regeneración Nerviosa , Fosfohidrolasa PTEN/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal , Animales , Axotomía , Supervivencia Celular , Ratones , Ratones Noqueados , Compresión Nerviosa , Nervio Óptico , Fosfohidrolasa PTEN/genética , Biosíntesis de Proteínas , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/fisiología , Proteína S6 Ribosómica/metabolismo , Serina-Treonina Quinasas TOR , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
13.
Genes Dev ; 22(18): 2485-95, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18794346

RESUMEN

Axon formation is fundamental for brain development and function. TSC1 and TSC2 are two genes, mutations in which cause tuberous sclerosis complex (TSC), a disease characterized by tumor predisposition and neurological abnormalities including epilepsy, mental retardation, and autism. Here we show that Tsc1 and Tsc2 have critical functions in mammalian axon formation and growth. Overexpression of Tsc1/Tsc2 suppresses axon formation, whereas a lack of Tsc1 or Tsc2 function induces ectopic axons in vitro and in the mouse brain. Tsc2 is phosphorylated and inhibited in the axon but not dendrites. Inactivation of Tsc1/Tsc2 promotes axonal growth, at least in part, via up-regulation of neuronal polarity SAD kinase, which is also elevated in cortical tubers of a TSC patient. Our results reveal key roles of TSC1/TSC2 in neuronal polarity, suggest a common pathway regulating polarization/growth in neurons and cell size in other tissues, and have implications for the understanding of the pathogenesis of TSC and associated neurological disorders and for axonal regeneration.


Asunto(s)
Axones , Proteínas Supresoras de Tumor/fisiología , Animales , Secuencia de Bases , Células Cultivadas , Cartilla de ADN , Electroporación , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
14.
J Neurosci ; 28(21): 5422-32, 2008 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-18495876

RESUMEN

Tuberous sclerosis (TSC) is a hamartoma syndrome attributable to mutations in either TSC1 or TSC2 in which brain involvement causes epilepsy, mental retardation, and autism. We have reported recently (Meikle et al., 2007) a mouse neuronal model of TSC in which Tsc1 is ablated in most neurons during cortical development. We have tested rapamycin and RAD001 [40-O-(2-hydroxyethyl)-rapamycin], both mammalian target of rapamycin mTORC1 inhibitors, as potential therapeutic agents in this model. Median survival is improved from 33 d to more than 100 d; behavior, phenotype, and weight gain are all also markedly improved. There is brain penetration of both drugs, with accumulation over time with repetitive treatment, and effective reduction of levels of phospho-S6, a downstream target of mTORC1. In addition, there is restoration of phospho-Akt and phospho-glycogen synthase kinase 3 levels in the treated mice, consistent with restoration of Akt function. Neurofilament abnormalities, myelination, and cell enlargement are all improved by the treatment. However, dysplastic neuronal features persist, and there are only modest changes in dendritic spine density and length. Strikingly, mice treated with rapamycin or RAD001 for 23 d only (postnatal days 7-30) displayed a persistent improvement in phenotype, with median survival of 78 d. In summary, rapamycin/RAD001 are highly effective therapies for this neuronal model of TSC, with benefit apparently attributable to effects on mTORC1 and Akt signaling and, consequently, cell size and myelination. Although caution is appropriate, the results suggest the possibility that rapamycin/RAD001 may have benefit in the treatment of TSC brain disease, including infantile spasms.


Asunto(s)
Inmunosupresores/uso terapéutico , Proteína Oncogénica v-akt/metabolismo , Transducción de Señal/fisiología , Sirolimus/uso terapéutico , Factores de Transcripción/metabolismo , Esclerosis Tuberosa , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Tamaño de la Célula/efectos de los fármacos , Dendritas/efectos de los fármacos , Dendritas/patología , Modelos Animales de Enfermedad , Everolimus , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/patología , Transducción de Señal/efectos de los fármacos , Sirolimus/análogos & derivados , Factores de Tiempo , Esclerosis Tuberosa/tratamiento farmacológico , Esclerosis Tuberosa/mortalidad , Esclerosis Tuberosa/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...