RESUMEN
Valosin-containing protein (VCP; aka p97), a member of the AAA (ATPases Associated with various cellular Activities) family, has been associated with a wide range of cellular functions. While previous evidence has shown its presence in mammalian sperm, our study unveils its function in mouse sperm. Notably, we found that mouse VCP does not undergo tyrosine phosphorylation during capacitation and exhibits distinct localization patterns. In the sperm head, it resides within the equatorial segment and, following acrosomal exocytosis, it is released and cleaved. In the flagellum, VCP is observed in the principal and midpiece. Furthermore, our research highlights a unique role for VCP in the cAMP/PKA pathway during capacitation. Pharmacological inhibition of sperm VCP led to reduced intracellular cAMP levels that resulted in decreased phosphorylation in PKA substrates and tyrosine residues and diminished fertilization competence. Our results show that in mouse sperm, VCP plays a pivotal role in regulating cAMP production, probably by the modulation of soluble adenylyl cyclase activity.
Asunto(s)
AMP Cíclico , Capacitación Espermática , Espermatozoides , Proteína que Contiene Valosina , Animales , Masculino , Capacitación Espermática/efectos de los fármacos , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Espermatozoides/metabolismo , Ratones , AMP Cíclico/metabolismo , Fosforilación , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genéticaRESUMEN
Hyperpolarization of the membrane potential (Em), a phenomenon regulated by SLO3 channels, stands as a central feature in sperm capacitation-a crucial process conferring upon sperm the ability to fertilize the oocyte. In vitro studies demonstrated that Em hyperpolarization plays a pivotal role in facilitating the mechanisms necessary for the development of hyperactivated motility (HA) and acrosomal exocytosis (AE) occurrence. Nevertheless, the physiological significance of sperm Em within the female reproductive tract remains unexplored. As an approach to this question, we studied sperm migration and AE incidence within the oviduct in the absence of Em hyperpolarization using a novel mouse model established by crossbreeding of SLO3 knock-out (KO) mice with EGFP/DsRed2 mice. Sperm from this model displays impaired HA and AE in vitro. Interestingly, examination of the female reproductive tract shows that SLO3 KO sperm can reach the ampulla, mirroring the quantity of sperm observed in wild-type (WT) counterparts, supporting that the HA needed to reach the fertilization site is not affected. However, a noteworthy distinction emerges-unlike WT sperm, the majority of SLO3 KO sperm arrive at the ampulla with their acrosomes still intact. Of the few SLO3 KO sperm that do manage to reach the oocytes within this location, fertilization does not occur, as indicated by the absence of sperm pronuclei in the MII-oocytes recovered post-mating. In vitro, SLO3 KO sperm fail to penetrate the ZP and fuse with the oocytes. Collectively, these results underscore the vital role of Em hyperpolarization in AE and fertilization within their physiological context, while also revealing that Em is not a prerequisite for the development of the HA motility, essential for sperm migration through the female tract to the ampulla.
RESUMEN
Sperm capacitation, crucial for fertilization, occurs in the female reproductive tract and can be replicated in vitro using a medium rich in bicarbonate, calcium, and albumin. These components trigger the cAMP-PKA signaling cascade, proposed to promote hyperpolarization of the mouse sperm plasma membrane through activation of SLO3 K+ channel. Hyperpolarization is a hallmark of capacitation: proper membrane hyperpolarization renders higher in vitro fertilizing ability, while Slo3 KO mice are infertile. However, the precise regulation of SLO3 opening remains elusive. Our study challenges the involvement of PKA in this event and reveals the role of Na+/H+ exchangers. During capacitation, calcium increase through CatSper channels activates NHE1, while cAMP directly stimulates the sperm-specific NHE, collectively promoting the alkalinization threshold needed for SLO3 opening. Hyperpolarization then feeds back Na+/H+ activity. Our work is supported by pharmacology, and a plethora of KO mouse models, and proposes a novel pathway leading to hyperpolarization.
RESUMEN
The cAMP-dependent protein kinase (PKA) is one of the most extensively distributed kinases among intracellular signal cascades, with a pivotal role in the regulation of various processes, including the capacitation of sperm cells. Traditional assessments of PKA activity relies on the utilization of [γ-32P] ATP and the Kemptide substrate. This methodology presents several major drawbacks, including high-costs and health risks derived from the manipulation of radioactive isotopes. In this work we introduce an enhanced non-radioactive assay for quantifying PKA activity, termed KiMSA which relies on the use of a fluorescent-labeled Kemptide (Kemptide-FITC). Once the kinase reaction is terminated, the products can be easily resolved through electrophoresis on an agarose gel and quantified by fluorescence densitometry. We show that the KiMSA assay is suitable for purified PKA, and also to address both basal and capacitation induced PKA activity in mouse sperm cells. Furthermore, the assay enables monitoring the inhibition of PKA with inhibitors such as sPKI and H-89 in live cells. Therefore, the experimental and optimal assay conditions are set so that the KiMSA assay can be used to either assess in vitro as well as in vivo PKA activity in sperm cells. Finally, this method allows for measurement of cAMP concentrations, rendering a versatile technique for the study of cAMP/PKA pathways.
RESUMEN
Mammalian sperm delve into the female reproductive tract to fertilize the female gamete. The available information about how sperm regulate their motility during the final journey to the fertilization site is extremely limited. In this work, we investigated the structural and functional changes in the sperm flagellum after acrosomal exocytosis and during the interaction with the eggs. The evidence demonstrates that the double helix actin network surrounding the mitochondrial sheath of the midpiece undergoes structural changes prior to the motility cessation. This structural modification is accompanied by a decrease in diameter of the midpiece and is driven by intracellular calcium changes that occur concomitant with a reorganization of the actin helicoidal cortex. Although midpiece contraction may occur in a subset of cells that undergo acrosomal exocytosis, live-cell imaging during in vitro fertilization showed that the midpiece contraction is required for motility cessation after fusion is initiated. These findings provide the first evidence of the F-actin network's role in regulating sperm motility, adapting its function to meet specific cellular requirements during fertilization, and highlighting the broader significance of understanding sperm motility. Significant statement: In this work, we demonstrate that the helical structure of polymerized actin in the flagellum undergoes a rearrangement at the time of sperm-egg fusion. This process is driven by intracellular calcium and promotes a decrease in the sperm midpiece diameter as well as the arrest in motility, which is observed after the fusion process is initiated.
RESUMEN
The exclusive expression of CatSper in sperm and its critical role in sperm function makes this channel an attractive target for contraception. The strategy of blocking CatSper as a male, non-hormonal contraceptive has not been fully explored due to the lack of robust screening methods to discover novel and specific inhibitors. The reason for this lack of appropriate methodology is the structural and functional complexity of this channel. We have developed a high-throughput method to screen drugs with the capacity to block CatSper in mammalian sperm. The assay is based on removing external free divalent cations by chelation, inducing CatSper to efficiently conduct monovalent cations. Since Na+ is highly concentrated in the extracellular milieu, a sudden influx depolarizes the cell. Using CatSper1 KO sperm we demonstrated that this depolarization depends on CatSper function. A membrane potential (Em) assay was combined with fluorescent cell barcoding (FCB), enabling higher throughput flow cytometry based on unique fluorescent signatures of different sperm samples. These differentially labeled samples incubated in distinct experimental conditions can be combined into one tube for simultaneous acquisition. In this way, acquisition times are highly reduced, which is essential to perform larger screening experiments for drug discovery using live cells. Altogether, a simple strategy for assessing CatSper was validated, and this assay was used to develop a high-throughput drug screening for new CatSper blockers.
RESUMEN
The actin cytoskeleton reorganization during sperm capacitation is essential for the occurrence of acrosomal exocytosis (AR) in several mammalian species. Here, we demonstrate that in mouse sperm, within the first minutes of exposure upon capacitating conditions, the activity of RHOA/C and RAC1 is essential for LIMK1 and COFILIN phosphorylation. However, we observed that the signaling pathway involving RAC1 and PAK4 is the main player in controlling actin polymerization in the sperm head necessary for the occurrence of AR. Moreover, we show that the transient phosphorylation of COFILIN is also influenced by the Slingshot family of protein phosphatases (SSH1). The activity of SSH1 is regulated by the dual action of two pathways. On one hand, RHOA/C and RAC1 activity promotes SSH1 phosphorylation (inactivation). On the other hand, the activating dephosphorylation is driven by okadaic acid-sensitive phosphatases. This regulatory mechanism is independent of the commonly observed activating mechanisms involving PP2B and emerges as a new finely tuned modulation that is, so far, exclusively observed in mouse sperm. However, persistent phosphorylation of COFILIN by SSH1 inhibition or okadaic acid did not altered actin polymerization and the AR. Altogether, our results highlight the role of small GTPases in modulating actin dynamics required for AR.
Asunto(s)
Factores Despolimerizantes de la Actina , Capacitación Espermática , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Animales , Cofilina 1/metabolismo , Exocitosis , Masculino , Mamíferos/metabolismo , Ratones , Ácido Ocadaico/metabolismo , Ácido Ocadaico/farmacología , Fosforilación , Semen/metabolismoRESUMEN
To acquire fertilization competence, mammalian sperm must undergo several biochemical and physiological modifications known as capacitation. Despite its relevance, the metabolic pathways that regulate the capacitation-related events, including the development of hyperactivated motility, are still poorly described. Previous studies from our group have shown that temporary energy restriction in mouse sperm enhanced hyperactivation, in vitro fertilization, early embryo development and pregnancy rates after embryo transfer, and it improved intracytoplasmic sperm injection results in the bovine model. However, the effects of starvation and energy recovery protocols on human sperm function have not yet been established. In the present work, human sperm were incubated for different periods of time in medium containing glucose, pyruvate and lactate (NUTR) or devoid of nutrients for the starving condition (STRV). Sperm maintained in STRV displayed reduced percentages of motility and kinematic parameters compared to cells incubated in NUTR medium. Moreover, they did not undergo hyperactivation and showed reduced levels of ATP, cAMP and protein tyrosine phosphorylation. Similar to our results with mouse sperm, starvation induced increased intracellular Ca2+ concentrations. Starved human sperm were capable to continue moving for more than 27 h, but the incubation with a mitochondrial uncoupler or inhibitors of oxidative phosphorylation led to a complete motility loss. When exogenous nutrients were added back (sperm energy recovery (SER) treatment), hyperactivated motility was rescued and there was a rise in sperm ATP and cAMP levels in 1 min, with a decrease in intracellular Ca2+ concentration and no changes in sperm protein tyrosine phosphorylation. The finding that human sperm can remain motile for several hours under starvation due to mitochondrial use of endogenous metabolites implies that other metabolic pathways may play a role in sperm energy production. In addition, full recovery of motility and other capacitation parameters of human sperm after SER suggests that this treatment might be used to modulate human sperm fertilizing ability in vitro.
RESUMEN
Soluble adenylyl cyclase (sAC: ADCY10) has been genetically confirmed to be essential for male fertility in mice and humans. In mice, ex vivo studies of dormant, caudal epididymal sperm demonstrated that sAC is required for initiating capacitation and activating motility. We now use an improved sAC inhibitor, TDI-10229, for a comprehensive analysis of sAC function in mouse and human sperm. In contrast to caudal epididymal mouse sperm, human sperm are collected post-ejaculation, after sAC activity has already been stimulated. In addition to preventing the capacitation-induced stimulation of sAC and protein kinase A activities, tyrosine phosphorylation, alkalinization, beat frequency and acrosome reaction in dormant mouse sperm, sAC inhibitors interrupt each of these capacitation-induced changes in ejaculated human sperm. Furthermore, we show for the first time that sAC is required during acrosomal exocytosis in mouse and human sperm. These data define sAC inhibitors as candidates for non-hormonal, on-demand contraceptives suitable for delivery via intravaginal devices in women.
Asunto(s)
Inhibidores de Adenilato Ciclasa/farmacología , Fertilización/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Adenilil Ciclasas/genética , Adenilil Ciclasas/fisiología , Animales , Células Cultivadas , Femenino , Fertilización/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Embarazo , Espermatozoides/fisiologíaRESUMEN
Sperm acquire the ability to fertilize in a process called capacitation and undergo hyperactivation, a change in the motility pattern, which depends on Ca2+ transport by CatSper channels. CatSper is essential for fertilization and it is subjected to a complex regulation that is not fully understood. Here, we report that similar to CatSper, Cdc42 distribution in the principal piece is confined to four linear domains and this localization is disrupted in CatSper1-null sperm. Cdc42 inhibition impaired CatSper activity and other Ca2+ -dependent downstream events resulting in a severe compromise of the sperm fertilizing potential. We also demonstrate that Cdc42 is essential for CatSper function by modulating cAMP production by soluble adenylate cyclase (sAC), providing a new regulatory mechanism for the stimulation of CatSper by the cAMP-dependent pathway. These results reveal a broad mechanistic insight into the regulation of Ca2+ in mammalian sperm, a matter of critical importance in male infertility as well as in contraception.
Asunto(s)
Canales de Calcio/metabolismo , Espermatozoides/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/deficiencia , Canales de Calcio/genética , Señalización del Calcio , AMP Cíclico/metabolismo , Femenino , Fertilización In Vitro , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Transducción de Señal , Capacitación Espermática/fisiología , Motilidad Espermática/fisiología , Cola del Espermatozoide/metabolismo , Espermatozoides/efectos de los fármacos , Espermatozoides/ultraestructura , Proteína de Unión al GTP cdc42/antagonistas & inhibidoresRESUMEN
Sperm capacitation is essential to gain fertilizing capacity. During this process, a series of biochemical and physiological modifications occur that allow sperm to undergo acrosomal exocytosis (AE). At the molecular level, hyperpolarization of the sperm membrane potential (Em) takes place during capacitation. This study shows that human sperm incubated under conditions that do not support capacitation (NC) can become ready for an agonist stimulated AE by pharmacologically inducing Em hyperpolarization with Valinomycin or Amiloride. To investigate how Em hyperpolarization promotes human sperm's ability to undergo AE, live single-cell imaging experiments were performed to simultaneously monitor changes in [Ca2+ ]i and the occurrence of AE. Em hyperpolarization turned [Ca2+ ]i dynamics in NC sperm from spontaneously oscillating into a sustained slow [Ca2+ ]i increase. The addition of progesterone (P4) or K+ to Valinomycin-treated sperm promoted that a significant number of cells displayed a transitory rise in [Ca2+ ]i which then underwent AE. Altogether, our results demonstrate that Em hyperpolarization is necessary and sufficient to prepare human sperm for the AE. Furthermore, this Em change decreased Ca2+ oscillations that block the occurrence of AE, providing strong experimental evidence of the molecular mechanism that drives the acquisition of acrosomal responsiveness.
Asunto(s)
Reacción Acrosómica , Señalización del Calcio , Exocitosis , Potenciales de la Membrana , Capacitación Espermática , Espermatozoides/fisiología , Humanos , Masculino , FosforilaciónRESUMEN
Mammalian sperm acquire ability to fertilize through a process called capacitation, occurring after ejaculation and regulated by both female molecules and male decapacitation factors. Bicarbonate and calcium present in the female reproductive tract trigger capacitation in sperm, leading to acrosomal responsiveness and hyperactivated motility. Male decapacitating factors present in the semen avert premature capacitation, until detached from the sperm surface. However, their mechanism of action remains elusive. Here we describe for the first time the molecular basis for the decapacitating action of the seminal protein SPINK3 in mouse sperm. When present in the capacitating medium, SPINK3 inhibited Src kinase, a modulator of the potassium channel responsible for plasma membrane hyperpolarization. Lack of hyperpolarization affected calcium channels activity, impairing the acquisition of acrosomal responsiveness and blocking hyperactivation. Interestingly, SPINK3 acted only on non-capacitated sperm, as it did not bind to capacitated cells. Binding selectivity allows its decapacitating action only in non-capacitated sperm, without affecting capacitated cells.
RESUMEN
Acrosomal exocytosis (AR) is a critical process that sperm need to undergo to fertilize an egg. The evaluation of the presence or absence of the acrosome is usually performed by using lectins or dyes in fixed cells. With this approach, it is neither possible to monitor the dynamic process of exocytosis and related molecular events while discriminating between live and dead cells, nor to evaluate the acrosomal status while sperm reside in the female reproductive tract. However, over the last two decades, several new methodologies have been used to assess the occurrence of AR in living cells allowing different groups to obtain information that was not possible in the past. These techniques have revolutionized the whole study of this process. This review summarizes current methods available to analyze AR in living cells as well as the important information that emerged from studies using these approaches.
Asunto(s)
Reacción Acrosómica/fisiología , Acrosoma/metabolismo , Exocitosis/fisiología , Fertilización In Vitro/métodos , Capacitación Espermática/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Calcio/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Zona Pelúcida/metabolismoRESUMEN
The 3', 5'-cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) is a tetrameric holoenzyme comprising a set of two regulatory subunits (PKA-R) and two catalytic (PKA-C) subunits. The PKA-R subunits act as sensors of cAMP and allow PKA-C activity. One of the first signaling events observed during mammalian sperm capacitation is PKA activation. Thus, understanding how PKA activity is restricted in space and time is crucial to decipher the critical steps of sperm capacitation. It is widely accepted that PKA specificity depends on several levels of regulation. Anchoring proteins play a pivotal role in achieving proper localization signaling, subcellular targeting and cAMP microdomains. These multi-factorial regulation steps are necessary for a precise spatio-temporal activation of PKA. Here we discuss recent understanding of regulatory mechanisms of PKA in mammalian sperm, such as post-translational modifications, in the context of its role as the master orchestrator of molecular events conducive to capacitation.
Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Capacitación Espermática/fisiología , Reacción Acrosómica/fisiología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Masculino , Mamíferos , Procesamiento Proteico-Postraduccional/fisiología , Transducción de Señal/fisiología , Espermatozoides/metabolismoRESUMEN
In order to acquire fertilizing potential, mammalian sperm must undergo a process known as capacitation , which relies on the early activation of Protein Kinase A (PKA). Frequently, PKA activity is assessed in whole-cell experiments by analyzing the phosphorylation status of its substrates in a western-blot. This technique faces two main disadvantages: it is not a direct measure of the kinase activity and it is a time-consuming approach. However, since PKA can be readily obtained from sperm extracts, in vitro assays such as the "radioactive assay" can be performed using the native enzyme. Unlike western-blot, the radioactive assay is a straightforward technique to evaluate PKA activity by quantification of incorporated 32P into a peptidic substrate. This approach easily allows the analysis of different agonists or antagonists of PKA. Since mouse sperm is a rich source of soluble PKA, this assay allows a simple fractionation that renders PKA usable both for in vitro testing of drugs on PKA activity and for following changes of PKA activity during the onset of capacitation.
RESUMEN
Mammalian sperm must undergo a complex process called capacitation in order to fertilize the egg. During this process, hyperpolarization of the sperm plasma membrane has been mostly studied in mouse, and associated to its importance in the preparation to undergo the acrosome reaction (AR). However, despite the increasing evidence of membrane hyperpolarization in human sperm capacitation, no reliable techniques have been set up for its determination. In this report we describe human sperm membrane potential (Em) measurements by a fluorimetric population assay, establishing optimal conditions for Em determination. In addition, we have conducted parallel measurements of the same human sperm samples by flow cytometry and population fluorimetry, before and after capacitation, to conclusively address their reliability. This integrative analysis sets the basis for the study of Em in human sperm allowing future work aiming to understand its role in human sperm capacitation.
RESUMEN
Serratia marcescens is an opportunistic pathogen with increasing incidence in clinical settings. This is mainly attributed to the timely expression of a wide diversity of virulence factors and intrinsic and acquired resistance to antibiotics, including ß-lactams, aminoglycosides, quinolones, and polypeptides. For these reasons, S. marcescens has been recently categorised by the World Health Organization as one priority to strengthen efforts directed to develop new antibacterial agents. Therefore, it becomes critical to understand the underlying mechanisms that allow Serratia to succeed within the host. S. marcescens ShlA pore-forming toxin mediates phenotypes that alter homeostatic and signal transduction pathways of host cells. It has been previously demonstrated that ShlA provokes cytotoxicity, haemolysis and autophagy and also directs Serratia egress and dissemination from invaded nonphagocytic cells. However, molecular details of ShlA mechanism of action are still not fully elucidated. In this work, we demonstrate that Ni2+ selectively and reversibly blocks ShlA action, turning wild-type S. marcescens into a shlA mutant strain phenocopy. Combined use of Ni2+ and calcium chelators allow to discern ShlA-triggered phenotypes that require intracellular calcium mobilisation and reveal ShlA function as a calcium channel, providing new insights into ShlA mode of action on target cells.
Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Canales de Calcio/metabolismo , Proteínas Hemolisinas/antagonistas & inhibidores , Níquel/farmacología , Serratia marcescens/efectos de los fármacos , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/metabolismo , Células CHO , Calcio/metabolismo , Cricetulus , Eritrocitos/microbiología , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/toxicidad , Hemólisis/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Fenotipo , Serratia marcescens/metabolismo , Serratia marcescens/patogenicidadRESUMEN
Mammalian sperm acquire the ability to fertilize eggs by undergoing a process known as capacitation. Capacitation is triggered as the sperm travels through the female reproductive tract. This process involves specific physiological changes such as rearrangement of the cell plasma membrane, post-translational modifications of certain proteins, and changes in the cellular permeability to ions - with the subsequent impact on the plasma membrane potential (Em). Capacitation-associated Em hyperpolarization has been well studied in mouse sperm, and shown to be both necessary and sufficient to promote the acrosome reaction (AR) and fertilize the egg. However, the relevance of the sperm Em upon capacitation on human fertility has not been thoroughly characterized. Here, we performed an extensive study of the Em change during capacitation in human sperm samples using a potentiometric dye in a fluorimetric assay. Normospermic donors showed significant Em hyperpolarization after capacitation. Em values from capacitated samples correlated significantly with the sperm ability to undergo induced AR, highlighting the role of hyperpolarization in acrosomal responsiveness, and with successful in vitro fertilization (IVF) rates. These results show that Em hyperpolarization could be an indicator of human sperm fertilizing capacity, setting the basis for the use of Em values as a robust predictor of the success rate of IVF.
RESUMEN
Filamentous actin (F-actin) is a key factor in exocytosis in many cell types. In mammalian sperm, acrosomal exocytosis (denoted the acrosome reaction or AR), a special type of controlled secretion, is regulated by multiple signaling pathways and the actin cytoskeleton. However, the dynamic changes of the actin cytoskeleton in live sperm are largely not understood. Here, we used the powerful properties of SiR-actin to examine actin dynamics in live mouse sperm at the onset of the AR. By using a combination of super-resolution microscopy techniques to image sperm loaded with SiR-actin or sperm from transgenic mice containing Lifeact-EGFP, six regions containing F-actin within the sperm head were revealed. The proportion of sperm possessing these structures changed upon capacitation. By performing live-cell imaging experiments, we report that dynamic changes of F-actin during the AR occur in specific regions of the sperm head. While certain F-actin regions undergo depolymerization prior to the initiation of the AR, others remain unaltered or are lost after exocytosis occurs. Our work emphasizes the utility of live-cell nanoscopy, which will undoubtedly impact the search for mechanisms that underlie basic sperm functions.This article has an associated First Person interview with the first author of the paper.
Asunto(s)
Acrosoma/metabolismo , Citoesqueleto de Actina/metabolismo , Espermatozoides/metabolismo , Animales , Exocitosis , Masculino , Ratones , Imagen MolecularRESUMEN
Mammalian sperm are unable to fertilize the egg immediately after ejaculation. To gain fertilization competence, they need to undergo a series of modifications inside the female reproductive tract, known as capacitation. Capacitation involves several molecular events such as phosphorylation cascades, hyperpolarization of the plasma membrane and intracellular Ca2+ changes, which prepare the sperm to develop two essential features for fertilization competence: hyperactivation and acrosome reaction. Since sperm cells lack new protein biosynthesis, post-translational modification of existing proteins plays a crucial role to obtain full functionality. Here, we show the presence of acetylated proteins in murine sperm, which increase during capacitation. Pharmacological hyperacetylation of lysine residues in non-capacitated sperm induces activation of PKA, hyperpolarization of the sperm plasma membrane, CatSper opening and Ca2+ influx, all capacitation-associated molecular events. Furthermore, hyperacetylation of non-capacitated sperm promotes hyperactivation and prepares the sperm to undergo acrosome reaction. Together, these results indicate that acetylation could be involved in the acquisition of fertilization competence of mammalian sperm.