Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RNA Biol ; 20(1): 149-153, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074161

RESUMEN

RNA-based enzyme RNase P is a ribonucleoprotein complex responsible primarily for 5'-maturation of tRNAs. S. cerevisiae RNase P comprises a catalytic RNA component and nine proteins. The assembly and maturation of S. cerevisiae RNase P involves an abundant and catalytically active precursor form, which includes all components except for proteins Rpr2 and Pop3. Rpr2 and Pop3 are essential proteins, but their roles in RNase P were not clear. Here we use a step-wise in vitro assembly of yeast RNase P to show that the addition of proteins Rpr2 and Pop3 increases the activity and thermal stability of the RNase P complex, similar to the effects previously observed for archaeal RNases P.


Asunto(s)
ARN Catalítico , Proteínas de Saccharomyces cerevisiae , Ribonucleasa P/genética , Saccharomyces cerevisiae/metabolismo , ARN/metabolismo , ARN Catalítico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Endorribonucleasas/metabolismo
2.
Nat Commun ; 11(1): 3474, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651392

RESUMEN

RNase MRP is an essential eukaryotic ribonucleoprotein complex involved in the maturation of rRNA and the regulation of the cell cycle. RNase MRP is related to the ribozyme-based RNase P, but it has evolved to have distinct cellular roles. We report a cryo-EM structure of the S. cerevisiae RNase MRP holoenzyme solved to 3.0 Å. We describe the structure of this 450 kDa complex, interactions between its components, and the organization of its catalytic RNA. We show that some of the RNase MRP proteins shared with RNase P undergo an unexpected RNA-driven remodeling that allows them to bind to divergent RNAs. Further, we reveal how this RNA-driven protein remodeling, acting together with the introduction of new auxiliary elements, results in the functional diversification of RNase MRP and its progenitor, RNase P, and demonstrate structural underpinnings of the acquisition of new functions by catalytic RNPs.


Asunto(s)
Microscopía por Crioelectrón , Endorribonucleasas/ultraestructura , Ribonucleoproteínas/ultraestructura , Carbono/química , Catálisis , Dominio Catalítico , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , ARN Catalítico/química , ARN de Hongos/química , Ribonucleasa P/química , Saccharomyces cerevisiae/enzimología
3.
Nucleic Acids Res ; 46(13): 6857-6868, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29722866

RESUMEN

RNase P is a ubiquitous site-specific endoribonuclease primarily responsible for the maturation of tRNA. Throughout the three domains of life, the canonical form of RNase P is a ribonucleoprotein (RNP) built around a catalytic RNA. The core RNA is well conserved from bacteria to eukaryotes, whereas the protein parts vary significantly. The most complex and the least understood form of RNase P is found in eukaryotes, where multiple essential proteins playing largely unknown roles constitute the bulk of the enzyme. Eukaryotic RNase P was considered intractable to in vitro reconstitution, mostly due to insolubility of its protein components, which hindered its studies. We have developed a robust approach to the in vitro reconstitution of Saccharomyces cerevisiae RNase P RNPs and used it to analyze the interplay and roles of RNase P components. The results eliminate the major obstacle to biochemical and structural studies of eukaryotic RNase P, identify components required for the activation of the catalytic RNA, reveal roles of proteins in the enzyme stability, localize proteins on RNase P RNA, and demonstrate the interdependence of the binding of RNase P protein modules to the core RNA.


Asunto(s)
Ribonucleasa P/química , Ribonucleasa P/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Huella de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN de Hongos/química , ARN de Hongos/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/química
4.
RNA ; 24(1): 1-5, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28971852

RESUMEN

RNase P catalyzes 5'-maturation of tRNAs in all three domains of life. This primary function is accomplished by either a ribozyme-centered ribonucleoprotein (RNP) or a protein-only variant (with one to three polypeptides). The large, multicomponent archaeal and eukaryotic RNase P RNPs appear disproportionate to the simplicity of their role in tRNA 5'-maturation, prompting the question of why the seemingly gratuitously complex RNP forms of RNase P were not replaced with simpler protein counterparts. Here, motivated by growing evidence, we consider the hypothesis that the large RNase P RNP was retained as a direct consequence of multiple roles played by its components in processes that are not related to the canonical RNase P function.


Asunto(s)
Ribonucleasa P/genética , Animales , Proteínas Arqueales/genética , Evolución Molecular , Humanos
5.
Cell ; 165(5): 1171-1181, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27156450

RESUMEN

Telomerase is the ribonucleoprotein enzyme that replenishes telomeric DNA and maintains genome integrity. Minimally, telomerase activity requires a templating RNA and a catalytic protein. Additional proteins are required for activity on telomeres in vivo. Here, we report that the Pop1, Pop6, and Pop7 proteins, known components of RNase P and RNase MRP, bind to yeast telomerase RNA and are essential constituents of the telomerase holoenzyme. Pop1/Pop6/Pop7 binding is specific and involves an RNA domain highly similar to a protein-binding domain in the RNAs of RNase P/MRP. The results also show that Pop1/Pop6/Pop7 function to maintain the essential components Est1 and Est2 on the RNA in vivo. Consistently, addition of Pop1 allows for telomerase activity reconstitution with wild-type telomerase RNA in vitro. Thus, the same chaperoning module has allowed the evolution of functionally and, remarkably, structurally distinct RNPs, telomerase, and RNases P/MRP from unrelated progenitor RNAs.


Asunto(s)
Ribonucleasa P/química , Ribonucleoproteínas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomycetales/enzimología , Telomerasa/química , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Inmunoprecipitación , Espectrometría de Masas , Modelos Moleculares , ARN de Hongos/metabolismo , Ribonucleasa P/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/metabolismo
6.
RNA ; 21(9): 1591-605, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26135751

RESUMEN

Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA-RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P.


Asunto(s)
Huella de Proteína/métodos , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Endorribonucleasas/química , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Catalítico/química , ARN de Hongos/química , Ribonucleasa P/química , Ribonucleasa P/genética , Ribonucleasa P/metabolismo , Ribonucleasas/química , Ribonucleasas/genética , Ribonucleasas/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Methods Mol Biol ; 1086: 193-207, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24136605

RESUMEN

Ribonucleoprotein complexes (RNPs) play crucial roles in a wide range of biological processes. Here, we describe experimental approaches to the UV crosslinking-based identification of protein-binding sites on RNA, using multicomponent Saccharomyces cerevisiae RNPs of the RNase P/MRP family as an example. To identify the binding sites of a protein component of interest, a hexahistidine affinity tag was fused to that protein. Then RNase P/MRP RNPs were purified from yeast cells that had expressed the protein component of interest with the fused tag, subjected to UV crosslinking, and disassembled to separate the non-covalently-bound components. The protein component of interest was isolated under denaturing conditions using the hexahistidine tag as a purification handle. Provided that the isolated protein formed UV-induced crosslinks with the RNA component of the studied RNP, the isolation of the protein resulted in the co-isolation of the covalently bound RNP RNA. The isolated protein was enzymatically degraded, and the UV crosslinked RNA was purified. The locations of the crosslinks formed between the protein component of interest and the RNP RNA were identified by primer extension with a reverse transcriptase followed by gel electrophoresis; this procedure was repeated for all of the protein components of RNases P/MRP.


Asunto(s)
ARN de Hongos/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Histidina/química , Oligopéptidos/química , ARN de Hongos/química , ARN de Hongos/aislamiento & purificación , ADN Polimerasa Dirigida por ARN/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/aislamiento & purificación , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Rayos Ultravioleta
8.
Nucleic Acids Res ; 41(14): 7084-91, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23700311

RESUMEN

Ribonuclease (RNase) MRP is a ubiquitous and essential site-specific eukaryotic endoribonuclease involved in the metabolism of a wide range of RNA molecules. RNase MRP is a ribonucleoprotein with a large catalytic RNA moiety that is closely related to the RNA component of RNase P, and multiple proteins, most of which are shared with RNase P. Here, we report the results of an ultraviolet-cross-linking analysis of interactions between a photoreactive RNase MRP substrate and the Saccharomyces cerevisiae RNase MRP holoenzyme. The results show that the substrate interacts with phylogenetically conserved RNA elements universally found in all enzymes of the RNase P/MRP family, as well as with a phylogenetically conserved RNA region that is unique to RNase MRP, and demonstrate that four RNase MRP protein components, all shared with RNase P, interact with the substrate. Implications for the structural organization of RNase MRP and the roles of its components are discussed.


Asunto(s)
Endorribonucleasas/metabolismo , Ribonucleoproteínas/metabolismo , Endorribonucleasas/química , Endorribonucleasas/clasificación , Holoenzimas/metabolismo , Modelos Moleculares , Ribonucleoproteínas/química , Saccharomyces cerevisiae/enzimología
9.
Methods Mol Biol ; 905: 123-43, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22736002

RESUMEN

A broad range of biological processes relies on complexes between RNA and proteins. Crystallization of RNA-protein complexes can yield invaluable information on structural organizations of key elements of cellular machinery. However, crystallization of RNA-protein complexes is often challenging and requires special approaches. Here we review the purification of RNA, RNA-binding proteins, and the formation and crystallization of RNA-protein complexes, using the crystallization of the P3 RNA domain of ribonuclease MRP, a multicomponent ribonucleoprotein complex involved in the metabolism of various RNA molecules, as an example. The RNA-protein complex was formed using gel-purified RNA, produced by run-off transcription with T7 RNA polymerase in vitro, and proteins that were overexpressed in Escherichia coli and purified to be RNase-free. The complex was crystallized using a sitting drop setup; initial screening for suitable crystallization conditions was performed using a sparse matrix approach.


Asunto(s)
Fraccionamiento Químico/métodos , Cristalización/métodos , ARN/química , ARN/metabolismo , Ribonucleasas/química , Ribonucleasas/metabolismo , ADN/genética , Electroforesis en Gel de Poliacrilamida , Oligonucleótidos/genética , Plásmidos/genética , ARN/biosíntesis , ARN/aislamiento & purificación , Ribonucleasas/biosíntesis , Ribonucleasas/aislamiento & purificación , Transcripción Genética , Levaduras/enzimología
10.
RNA ; 18(4): 720-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22332141

RESUMEN

Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.


Asunto(s)
Endorribonucleasas/metabolismo , ARN/metabolismo , Ribonucleasa P/metabolismo , Saccharomyces cerevisiae/enzimología , Rayos Ultravioleta , Endorribonucleasas/química , Ribonucleasa P/química
11.
RNA ; 17(10): 1922-31, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21878546

RESUMEN

Ribonuclease (RNase) MRP is a multicomponent ribonucleoprotein complex closely related to RNase P. RNase MRP and eukaryotic RNase P share most of their protein components, as well as multiple features of their catalytic RNA moieties, but have distinct substrate specificities. While RNase P is practically universally found in all three domains of life, RNase MRP is essential in eukaryotes. The structural organizations of eukaryotic RNase P and RNase MRP are poorly understood. Here, we show that Pop5 and Rpp1, protein components found in both RNase P and RNase MRP, form a heterodimer that binds directly to the conserved area of the putative catalytic domain of RNase MRP RNA. The Pop5/Rpp1 binding site corresponds to the protein binding site in bacterial RNase P RNA. Structural and evolutionary roles of the Pop5/Rpp1 heterodimer in RNases P and MRP are discussed.


Asunto(s)
Proteínas Portadoras/metabolismo , Dominio Catalítico , Endorribonucleasas/metabolismo , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas Portadoras/química , Endorribonucleasas/química , Holoenzimas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Hongos/química , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Alineación de Secuencia
12.
RNA ; 17(2): 356-64, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21173200

RESUMEN

The ribonucleoprotein complex ribonuclease (RNase) MRP is a site-specific endoribonuclease essential for the survival of the eukaryotic cell. RNase MRP closely resembles RNase P (a universal endoribonuclease responsible for the maturation of the 5' ends of tRNA) but recognizes distinct substrates including pre-rRNA and mRNA. Here we report the results of an in vitro selection of Saccharomyces cerevisiae RNase MRP substrates starting from a pool of random sequences. The results indicate that RNase MRP cleaves single-stranded RNA and is sensitive to sequences in the immediate vicinity of the cleavage site requiring a cytosine at the position +4 relative to the cleavage site. Structural implications of the differences in substrate recognition by RNases P and MRP are discussed.


Asunto(s)
Endorribonucleasas/química , Saccharomyces cerevisiae/enzimología , Secuencia de Bases , Sitios de Unión , Endorribonucleasas/metabolismo , Datos de Secuencia Molecular , Conformación Proteica , ARN/química , ARN/metabolismo , Precursores del ARN/química , Precursores del ARN/metabolismo , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
13.
RNA ; 16(9): 1725-47, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20627997

RESUMEN

Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.


Asunto(s)
Endorribonucleasas/química , Endorribonucleasas/metabolismo , Ribonucleasa P/química , Ribonucleasa P/metabolismo , Animales , Bacterias/enzimología , Evolución Molecular , Humanos , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo
14.
RNA Biol ; 7(5): 534-9, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20523128

RESUMEN

Nuclear Ribonuclease (RNase) P is a universal essential RNA-based enzyme made of a catalytic RNA component and a protein part; eukaryotic RNase P is closely related to a universal eukaryotic ribonucleoprotein RNase MRP. The protein part of the eukaryotic RNases P/MRP is dramatically more complex than that in bacterial and archaeal RNases P. The increase in the complexity of the protein part in eukaryotic RNases P/MRP was accompanied by the appearance of a novel structural element in the RNA component: an essential and phylogenetically conserved helix-loop-helix P3 RNA domain. The crystal structure of the P3 RNA domain in a complex with protein components Pop6 and Pop7 has been recently solved. Here we discuss the most salient structural features of the P3 domain as well as its possible role in the evolutionary transition to the protein-rich eukaryotic RNases P/MRP.


Asunto(s)
Endorribonucleasas/química , Endorribonucleasas/metabolismo , Evolución Molecular , Ribonucleasa P/química , Ribonucleasa P/metabolismo , Animales , Archaea/enzimología , Bacterias/enzimología , Hongos/enzimología , Humanos , Conformación de Ácido Nucleico , Ribonucleoproteínas/metabolismo
15.
RNA ; 16(3): 529-37, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20086051

RESUMEN

RNase MRP is a ribonucleoprotein endoribonuclease found in three cellular locations where distinct substrates are processed: the mitochondria, the nucleolus, and the cytoplasm. Cytoplasmic RNase MRP is the nucleolar enzyme that is transiently relocalized during mitosis. Nucleolar RNase MRP (NuMRP) was purified to homogeneity, and we extensively purified the mitochondrial RNase MRP (MtMRP) to a single RNA component identical to the NuMRP RNA. Although the protein components of the NuMRP were identified by mass spectrometry successfully, none of the known NuMRP proteins were found in the MtMRP preparation. Only trace amounts of the core NuMRP protein, Pop4, were detected in MtMRP by Western blot. In vitro activity of the two enzymes was compared. MtMRP cleaved only mitochondrial ORI5 substrate, while NuMRP cleaved all three substrates. However, the NuMRP enzyme cleaved the ORI5 substrate at sites different than the MtMRP enzyme. In addition, enzymatic differences in preferred ionic strength confirm these enzymes as distinct entities. Magnesium was found to be essential to both enzymes. We tested a number of reported inhibitors including puromycin, pentamidine, lithium, and pAp. Puromycin inhibition suggested that it binds directly to the MRP RNA, reaffirming the role of the RNA component in catalysis. In conclusion, our study confirms that the NuMRP and MtMRP enzymes are distinct entities with differing activities and protein components but a common RNA subunit, suggesting that the RNA must be playing a crucial role in catalytic activity.


Asunto(s)
Nucléolo Celular/enzimología , Endorribonucleasas/metabolismo , Mitocondrias/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Nucléolo Celular/metabolismo , Replicación del ADN , Mitocondrias/metabolismo , Subunidades de Proteína , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-20057077

RESUMEN

Eukaryotic ribonucleases P and MRP are closely related RNA-based enzymes which contain a catalytic RNA component and several protein subunits. The roles of the protein subunits in the structure and function of eukaryotic ribonucleases P and MRP are not clear. Crystals of a complex that included a circularly permuted 46-nucleotide-long P3 domain of the RNA component of Saccharomyces cerevisiae ribonuclease MRP and selenomethionine derivatives of the shared ribonuclease P/MRP protein components Pop6 (18.2 kDa) and Pop7 (15.8 kDa) were obtained using the sitting-drop vapour-diffusion method. The crystals belonged to space group P4(2)22 (unit-cell parameters a = b = 127.2, c = 76.8 A, alpha = beta = gamma = 90 degrees ) and diffracted to 3.25 A resolution.


Asunto(s)
Endorribonucleasas/química , Ribonucleasa P/química , Cristalización , Cristalografía por Rayos X , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/enzimología
17.
EMBO J ; 29(4): 761-9, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-20075859

RESUMEN

Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 A. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.


Asunto(s)
Endorribonucleasas/química , ARN de Hongos/química , Ribonucleasa P/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Secuencia de Bases , Cristalografía por Rayos X , Endorribonucleasas/genética , Holoenzimas/química , Holoenzimas/genética , Sustancias Macromoleculares/química , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , ARN de Hongos/genética , Ribonucleasa P/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Homología de Secuencia de Aminoácido , Electricidad Estática
18.
RNA ; 14(8): 1558-67, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18579867

RESUMEN

Eukaryotic ribonuclease (RNase) P and RNase MRP are evolutionary related RNA-based enzymes involved in metabolism of various RNA molecules, including tRNA and rRNA. In contrast to the closely related eubacterial RNase P, which is comprised of an RNA component and a single small protein, these enzymes contain multiple protein components. Here we report the results of footprinting studies performed on purified Saccharomyces cerevisiae RNase MRP and RNase P holoenzymes. The results identify regions of the RNA components affected by the protein moiety, suggest a role of the proteins in stabilization of the RNA fold, and point to substantial similarities between the two evolutionary related RNA-based enzymes.


Asunto(s)
Endorribonucleasas/química , ARN Catalítico/metabolismo , ARN de Hongos/metabolismo , Ribonucleasa P/química , Ribonucleoproteínas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Secuencia de Bases , Endorribonucleasas/metabolismo , Evolución Molecular , Datos de Secuencia Molecular , Huella de Proteína , ARN Catalítico/química , ARN de Hongos/química , Ribonucleasa P/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
RNA ; 13(10): 1648-55, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17717080

RESUMEN

Pop6 and Pop7 are protein subunits of Saccharomyces cerevisiae RNase MRP and RNase P. Here we show that bacterially expressed Pop6 and Pop7 form a soluble heterodimer that binds the RNA components of both RNase MRP and RNase P. Footprint analysis of the interaction between the Pop6/7 heterodimer and the RNase MRP RNA, combined with gel mobility assays, demonstrates that the Pop6/7 complex binds to a conserved region of the P3 domain. Binding of these proteins to the MRP RNA leads to local rearrangement in the structure of the P3 loop and suggests that direct interaction of the Pop6/7 complex with the P3 domain of the RNA components of RNases MRP and P may mediate binding of other protein components. These results suggest a role for a key element in the RNase MRP and RNase P RNAs in protein binding, and demonstrate the feasibility of directly studying RNA-protein interactions in the eukaryotic RNases MRP and P complexes.


Asunto(s)
Endorribonucleasas/metabolismo , ARN de Hongos/metabolismo , Ribonucleasa P/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Bases , Dimerización , Endorribonucleasas/química , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , Subunidades de Proteína , Ribonucleasa P/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
20.
RNA ; 12(4): 598-606, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16581805

RESUMEN

Tertiary RNA structures from thermophilic bacteria generally are more stable than their mesophilic homologs. To understand the structural basis of the increase in stability, we investigated equilibrium folding of the specificity domain (S-domain) of RNase P RNA from a mesophilic (Escherichia coli) and a thermophilic (Thermus thermophilus) bacterium. Equilibrium folding of both S-domains is described by a minimal, three-state folding scheme, U-to-I-to-N. In the I-to-N transition of the thermophilic S-domain, more structure forms and protections are stronger against T1 nuclease and hydroxyl radical reactions. Phylogenetic comparison in the context of the native structure reveals that among 39 nucleotide differences between these S-domains, 12 likely contribute to higher stability. These residues participate in extensive networks of hydrogen bonding, stacking, and metal ion coordination throughout the molecule. The thermophilic S-domain achieves higher stability by mutating strategic base pairs to G-C, decreasing surface accessibility of the native state, and increasing the amount of structure formation in the native folding transition. An E. coli S-domain mutant containing these 12 nt has the same stability and folding cooperativity as the T. thermophilus S-domain. E. coli S-domain mutants containing a subset of 4 or 6 nt have the same stability as the T. thermophilus S-domain but the same folding cooperativity as the E. coli S-domain. These results show that increasing stability can be accomplished by mutations within a local structure, but increasing folding cooperativity needs concerted changes among multiple structural units.


Asunto(s)
Conformación de Ácido Nucleico , ARN Bacteriano/química , Thermus thermophilus/genética , Secuencia de Bases , Dicroismo Circular , Escherichia coli/genética , Datos de Secuencia Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...