Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Radiother Oncol ; 190: 109973, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37913953

RESUMEN

BACKGROUND AND PURPOSE: This study investigates whether combined proton-photon therapy (CPPT) improves treatment plan quality compared to single-modality intensity-modulated radiation therapy (IMRT) or intensity-modulated proton therapy (IMPT) for head and neck cancer (HNC) patients. Different proton beam arrangements for CPPT and IMPT are compared, which could be of specific interest concerning potential future upright-positioned treatments. Furthermore, it is evaluated if CPPT benefits remain under inter-fractional anatomical changes for HNC treatments. MATERIAL AND METHODS: Five HNC patients with a planning CT and multiple (4-7) repeated CTs were studied. CPPT with simultaneously optimized photon and proton fluence, single-modality IMPT, and IMRT treatment plans were optimized on the planning CT and then recalculated and reoptimized on each repeated CT. For CPPT and IMPT, plans with different degrees of freedom for the proton beams were optimized. Fixed horizontal proton beam line (FHB), gantry-like, and arc-like plans were compared. RESULTS: The target coverage for CPPT without adaptation is insufficient (average V95%=88.4 %), while adapted plans can recover the initial treatment plan quality for target (average V95%=95.5 %) and organs-at-risk. CPPT with increased proton beam flexibility increases plan quality and reduces normal tissue complication probability of Xerostomia and Dysphagia. On average, Xerostomia NTCP reductions compared to IMRT are -2.7 %/-3.4 %/-5.0 % for CPPT FHB/CPPT Gantry/CPPT Arc. The differences for IMPT FHB/IMPT Gantry/IMPT Arc are + 0.8 %/-0.9 %/-4.3 %. CONCLUSION: CPPT for HNC needs adaptive treatments. Increasing proton beam flexibility in CPPT, either by using a gantry or an upright-positioned patient, improves treatment plan quality. However, the photon component is substantially reduced, therefore, the balance between improved plan quality and costs must be further determined.


Asunto(s)
Neoplasias de Cabeza y Cuello , Terapia de Protones , Radioterapia de Intensidad Modulada , Xerostomía , Humanos , Terapia de Protones/efectos adversos , Protones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/etiología , Radioterapia de Intensidad Modulada/efectos adversos , Órganos en Riesgo , Xerostomía/etiología
2.
Cancers (Basel) ; 15(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37760417

RESUMEN

PURPOSE: The purpose of this study was to report the clinical and patient-reported outcomes of children and adolescents with intracranial meningioma treated with pencil beam scanning proton therapy (PBS-PT). MATERIAL AND METHODS: Out of a total cohort of 207 intracranial meningioma patients treated with PBS-PT between 1999 and 2022, 10 (4.8%) were children or adolescents aged < 18 years. Median age was 13.9 years (range, 3.2-17.2). Six (60%) children were treated as primary treatment (postoperative PT, n = 4; exclusive PT, n = 2) and four (40%) at the time of tumor recurrence. Acute and late toxicities were registered according to Common Terminology Criteria of Adverse Events (CTCAE). Quality of life (QoL) before PBS-PT was assessed using PEDQOL questionnaires. Educational, functional, and social aspects after PT were assessed through our in-house developed follow-up surveys. Median follow-up time was 71.1 months (range, 2.5-249.7), and median time to last questionnaire available was 37.6 months (range, 5.75-112.6). RESULTS: Five (50%) children developed local failure (LF) at a median time of 32.4 months (range, 17.7-55.4) after PBS-PT and four (80%) were considered in-field. One patient died of T-cell lymphoma 127.1 months after PBS-PT. Estimated 5-year local control (LC) and overall survival (OS) rates were 19.4% and 100.0%, respectively. Except for one patient who developed a cataract requiring surgery, no grade ≥3 late toxicities were reported. Before PT, patients rated their QoL lower than their parents in most domains. During the first year after PT, one child required educational support, one needed to attend to a special school, one had social problems and another three children required assistance for daily basic activities (DBA). Three years after PT, only one child required assistance for DBA. CONCLUSIONS: The outcome of children with intracranial meningioma treated with PBS-PT is in line with other centers who have reported results of radiation therapy delivered to this particular patient group. This therapy provides acceptable functional status profiles with no high-grade adverse radiation-induced events.

3.
Cancers (Basel) ; 15(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37370709

RESUMEN

The aim of this study was to assess the clinical outcome, including QoL, of patients with intracranial meningiomas WHO grade 1-3 who were treated with Pencil Beam Scanning Proton Therapy (PBS PT) between 1997 and 2022. Two hundred patients (median age 50.4 years, 70% WHO grade 1) were analyzed. Acute and late side effects were classified according to CTCAE version 5.0. Time to event data were calculated. QoL was assessed descriptively by the EORTC-QLQ-C30 and BN20 questionnaires. With a median follow-up of 65 months (range: 3.8-260.8 months) the 5 year OS was 95.7% and 81.8% for WHO grade 1 and grade 2/3, respectively (p < 0.001). Twenty (10%) local failures were observed. Failures occurred significantly (p < 0.001) more frequent in WHO grade 2 or 3 meningioma (WHO grade 1: n = 7, WHO grade 2/3: n = 13), in patients with multiple meningiomas (p = 0.005), in male patients (p = 0.005), and when PT was initiated not as upfront therapy (p = 0.011). There were no high-grade toxicities in the majority (n = 176; 88%) of patients. QoL was assessed for 83 (41.5%) patients and for those patients PT did not impacted QoL negatively during the follow-up. In summary, we observed very few local recurrences of meningiomas after PBS PT, a stable QoL, and a low rate of high-grade toxicity.

5.
Neurooncol Adv ; 5(1): vdad001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875625

RESUMEN

Background: 2-hydroxy-glutarate (2HG) is a metabolite that accumulates in isocitrate dehydrogenase (IDH)-mutated gliomas and can be detected noninvasively using MR spectroscopy. However, due to the low concentration of 2HG, established magnetic resonance spectroscopic imaging (MRSI) techniques at the low field have limitations with respect to signal-to-noise and to the spatial resolution that can be obtained within clinically acceptable measurement times. Recently a tailored editing method for 2HG detection at 7 Tesla (7 T) named SLOW-EPSI was developed. The underlying prospective study aimed to compare SLOW-EPSI to established techniques at 7 T and 3 T for IDH-mutation status determination. Methods: The applied sequences were MEGA-SVS and MEGA-CSI at both field strengths and SLOW-EPSI at 7 T only. Measurements were performed on a MAGNETOM-Terra 7 T MR-scanner in clinical mode using a Nova 1Tx32Rx head coil and on a 3 T MAGNETOM-Prisma scanner with a standard 32-channel head coil. Results: Fourteen patients with suspected glioma were enrolled. Histopathological confirmation was available in 12 patients. IDH mutation was confirmed in 9 out of 12 cases and 3 cases were characterized as IDH wildtype. SLOW-EPSI at 7 T showed the highest accuracy for IDH-status prediction (91.7% accuracy, 11 of the 12 predictions correct with 1 false negative case). At 7 T, MEGA-CSI had an accuracy of 58.3% and MEGA-SVS had an accuracy of 75%. At 3 T, MEGA-CSI showed an accuracy of 63.6% and MEGA-SVS of 33.3%. The co-edited cystathionine was detected in 2 out of 3 oligodendroglioma cases with 1p/19q codeletion. Conclusions: Depending on the pulse sequence, spectral editing can be a powerful tool for the noninvasive determination of the IDH status. SLOW-editing EPSI sequence is the preferable pulse sequence when used at 7 T for IDH-status characterization.

6.
Cancers (Basel) ; 14(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35267486

RESUMEN

BACKGROUND: Moderate hyperthermia is a potent and evidence-based radiosensitizer. Several indications are reimbursed for the combination of deep hyperthermia with radiotherapy (dHT+RT). We evaluated the current practice of dHT+RT in Switzerland. METHODS: All indications presented to the national hyperthermia tumor board for dHT between January 2017 and June 2021 were evaluated and treatment schedules were analyzed using descriptive statistics. RESULTS: Of 183 patients presented at the hyperthermia tumor board, 71.6% were accepted and 54.1% (99/183) finally received dHT. The most commonly reimbursed dHT indications were "local recurrence and compression" (20%), rectal (14.7%) and bladder (13.7%) cancer, respectively. For 25.3% of patients, an individual request for insurance cover was necessary. 47.4% of patients were treated with curative intent; 36.8% were in-house patients and 63.2% were referred from other hospitals. CONCLUSIONS: Approximately two thirds of patients were referred for dHT+RT from external hospitals, indicating a general demand for dHT in Switzerland. The patterns of care were diverse with respect to treatment indication. To the best of our knowledge, this study shows for the first time the pattern of care in a national cohort treated with dHT+RT. This insight will serve as the basis for a national strategy to evaluate and expand the evidence for dHT.

7.
Neural Regen Res ; 12(11): 1816-1822, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29239327

RESUMEN

Glioblastoma multiforme (GBM) is a highly aggressive glial brain tumor with an unfavorable prognosis despite all current therapies including surgery, radiation and chemotherapy. One characteristic of this tumor is a strong synthesis of vascular endothelial growth factor (VEGF), an angiogenesis factor, followed by pronounced vascularization. VEGF became a target in the treatment of GBM, for example with bevacizumab or the tyrosine kinase inhibitor axitinib, which blocks VEGF receptors. To improve patients' prognosis, new targets in the treatment of GBM are under investigations. The role of gap junctions in GBM remains unknown, but some experimental therapies affect these intercellular channels to treat the tumor. Gap junctions are composed of connexins to allow the transport of small molecules between adjacent cells through gap junctional intercellular communication (GJIC). Based on data derived from astrocytes in former studies, which show that VEGF is able to enhance GJIC, the current study analyzed the effects of VEGF, radiation therapy and VEGF receptor blockade by axitinib on GJIC in human GBM cell lines U-87 and U-251. While VEGF is able to induce GJIC in U-251 cells but not in U-87 cells, radiation enhances GJIC in both cell lines. VEGF receptor blockade by axitinib diminishes radiation induced effects in U-251 partially, while increases GJIC in U-87 cells. Our data indicate that VEGF and radiation are both modifying components of GJIC in pathologic brain tumor tissue.

8.
Front Oncol ; 7: 182, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28879167

RESUMEN

Glioblastoma multiforme (GBM) is the most common primary brain tumor. It is highly aggressive with an unfavorable prognosis for the patients despite therapies including surgery, irradiation, and chemotherapy. One important characteristic of highly vascularized GBM is the strong expression of vascular endothelial growth factor (VEGF). VEGF has become a new target in the treatment of GBM, and targeted therapies such as the VEGF-receptor blocker axitinib are in clinical trials. Most studies focus on VEGF-induced angiogenesis, but only very few investigations analyze autocrine or paracrine effects of VEGF on the tumor cells. In this study, we examined the impact of VEGF, irradiation, and axitinib on cell proliferation and cell motility in human GBM cell lines U-251 and U-373. VEGF receptor 2 was shown to be expressed within both cell lines by using PCR and immunochemistry. Moreover, we performed 24-h videography to analyze motility, and a viability assay for cell proliferation. We observed increasing effects of VEGF and irradiation on cell motility in both cell lines, as well as strong inhibiting effects on cellular motility by VEGF-receptor blockade using axitinib. Moreover, axitinib diminished irradiation induced accelerating effects. While VEGF stimulation or irradiation did not affect cell proliferation, axitinib significantly decreased cell proliferation in both cell lines. Therefore, the impairment of VEGF signaling might have a crucial role in the treatment of GBM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...