Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Leukemia ; 37(12): 2367-2382, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37935978

RESUMEN

High metabolic flexibility is pivotal for the persistence and therapy resistance of acute myeloid leukemia (AML). In 20-30% of AML patients, activating mutations of FLT3, specifically FLT3-ITD, are key therapeutic targets. Here, we investigated the influence of FLT3-ITD on AML metabolism. Nuclear Magnetic Resonance (NMR) profiling showed enhanced reshuffling of pyruvate towards the tricarboxylic acid (TCA) cycle, suggesting an increased activity of the pyruvate dehydrogenase complex (PDC). Consistently, FLT3-ITD-positive cells expressed high levels of PDP1, an activator of the PDC. Combining endogenous tagging of PDP1 with genome-wide CRISPR screens revealed that FLT3-ITD induces PDP1 expression through the RAS signaling axis. PDP1 knockdown resulted in reduced cellular respiration thereby impairing the proliferation of only FLT3-ITD cells. These cells continued to depend on PDP1, even in hypoxic conditions, and unlike FLT3-ITD-negative cells, they exhibited a rapid, PDP1-dependent revival of their respiratory capacity during reoxygenation. Moreover, we show that PDP1 modifies the response to FLT3 inhibition. Upon incubation with the FLT3 tyrosine kinase inhibitor quizartinib (AC220), PDP1 persisted or was upregulated, resulting in a further shift of glucose/pyruvate metabolism towards the TCA cycle. Overexpression of PDP1 enhanced, while PDP1 depletion diminished AC220 resistance in cell lines and peripheral blasts from an AC220-resistant AML patient in vivo. In conclusion, FLT3-ITD assures the expression of PDP1, a pivotal metabolic regulator that enhances oxidative glucose metabolism and drug resistance. Hence, PDP1 emerges as a potentially targetable vulnerability in the management of AML.


Asunto(s)
Leucemia Mieloide Aguda , Inhibidores de Proteínas Quinasas , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Piruvatos/uso terapéutico , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/uso terapéutico
2.
Cells ; 8(8)2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31370337

RESUMEN

Acute myeloid leukemia (AML) is one of the most common and life-threatening leukemias. A highly diverse and flexible metabolism contributes to the aggressiveness of the disease that is still difficult to treat. By using different sources of nutrients for energy and biomass supply, AML cells gain metabolic plasticity and rapidly outcompete normal hematopoietic cells. This review aims to decipher the diverse metabolic strategies and the underlying oncogenic and environmental changes that sustain continuous growth, mediate redox homeostasis and induce drug resistance in AML. We revisit Warburg's hypothesis and illustrate the role of glucose as a provider of cellular building blocks rather than as a supplier of the tricarboxylic acid (TCA) cycle for energy production. We discuss how the diversity of fuels for the TCA cycle, including glutamine and fatty acids, contributes to the metabolic plasticity of the disease and highlight the roles of amino acids and lipids in AML metabolism. Furthermore, we point out the potential of the different metabolic effectors to be used as novel therapeutic targets.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Metabolismo Energético , Leucemia Mieloide Aguda/metabolismo , Ciclo del Ácido Cítrico , Glucólisis , Humanos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...