Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nucleic Acids Res ; 52(19): 11738-11752, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39268578

RESUMEN

Homologous recombination (HR) factors are crucial for DSB repair and processing stalled replication forks. RAD51 paralogs, including RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, have emerged as essential tumour suppressors, forming two subcomplexes, BCDX2 and CX3. Mutations in these genes are associated with cancer susceptibility and Fanconi anaemia, yet their biochemical activities remain unclear. This study reveals a linear arrangement of BCDX2 subunits compared to the RAD51 ring. BCDX2 shows a strong affinity towards single-stranded DNA (ssDNA) via unique binding mechanism compared to RAD51, and a contribution of DX2 subunits in binding branched DNA substrates. We demonstrate that BCDX2 facilitates RAD51 loading on ssDNA by suppressing the cooperative requirement of RAD51 binding to DNA and stabilizing the filament. Notably, BCDX2 also promotes RAD51 loading on short ssDNA and reversed replication fork substrates. Moreover, while mutants defective in ssDNA binding retain the ability to bind branched DNA substrates, they still facilitate RAD51 loading onto reversed replication forks. Our study provides mechanistic insights into how the BCDX2 complex stimulates the formation of BRCA2-independent RAD51 filaments on short stretches of ssDNA present at ssDNA gaps or stalled replication forks, highlighting its role in genome maintenance and DNA repair.


Asunto(s)
Replicación del ADN , ADN de Cadena Simple , Proteínas de Unión al ADN , Recombinasa Rad51 , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Replicación del ADN/genética , Unión Proteica , Mutación
3.
Nucleic Acids Res ; 52(12): 7012-7030, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38832625

RESUMEN

Homologous recombination involves the formation of branched DNA molecules that may interfere with chromosome segregation. To resolve these persistent joint molecules, cells rely on the activation of structure-selective endonucleases (SSEs) during the late stages of the cell cycle. However, the premature activation of SSEs compromises genome integrity, due to untimely processing of replication and/or recombination intermediates. Here, we used a biochemical approach to show that the budding yeast SSEs Mus81 and Yen1 possess the ability to cleave the central recombination intermediate known as the displacement loop or D-loop. Moreover, we demonstrate that, consistently with previous genetic data, the simultaneous action of Mus81 and Yen1, followed by ligation, is sufficient to recreate the formation of a half-crossover precursor in vitro. Our results provide not only mechanistic explanation for the formation of a half-crossover, but also highlight the critical importance for precise regulation of these SSEs to prevent chromosomal rearrangements.


Asunto(s)
Intercambio Genético , Proteínas de Unión al ADN , Endonucleasas , Proteínas de Saccharomyces cerevisiae , Endonucleasas/metabolismo , Endonucleasas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Resolvasas de Unión Holliday/metabolismo , Resolvasas de Unión Holliday/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Recombinación Homóloga
4.
iScience ; 27(4): 109524, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38577109

RESUMEN

Homologous recombination (HR) protects replication forks (RFs) and repairs DNA double-strand breaks (DSBs). Within HR, BRCA2 regulates RAD51 via two interaction regions: the BRC repeats to form filaments on single-stranded DNA and exon 27 (Ex27) to stabilize the filament. Here, we identified a RAD51 S181P mutant that selectively disrupted the RAD51-Ex27 association while maintaining interaction with BRC repeat and proficiently forming filaments capable of DNA binding and strand invasion. Interestingly, RAD51 S181P was defective for RF protection/restart but proficient for DSB repair. Our data suggest that Ex27-mediated stabilization of RAD51 filaments is required for the protection of RFs, while it seems dispensable for the repair of DSBs.

5.
Sci Adv ; 10(6): eadk2685, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38324687

RESUMEN

Transcription-replication conflicts (TRCs) induce formation of cotranscriptional RNA:DNA hybrids (R-loops) stabilized by G-quadruplexes (G4s) on the displaced DNA strand, which can cause fork stalling. Although it is known that these stalled forks can resume DNA synthesis in a process initiated by MUS81 endonuclease, how TRC-associated G4/R-loops are removed to allow fork passage remains unclear. Here, we identify the mismatch repair protein MutSß, an MLH1-PMS1 heterodimer termed MutLß, and the G4-resolving helicase FANCJ as factors that are required for MUS81-initiated restart of DNA replication at TRC sites in human cells. This DNA repair process depends on the G4-binding activity of MutSß, the helicase activity of FANCJ, and the binding of FANCJ to MLH1. Furthermore, we show that MutSß, MutLß, and MLH1-FANCJ interaction mediate FANCJ recruitment to G4s. These data suggest that MutSß, MutLß, and FANCJ act in conjunction to eliminate G4/R-loops at TRC sites, allowing replication restart.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi , Estructuras R-Loop , Humanos , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN , ADN/genética
6.
Nucleic Acids Res ; 52(8): 4328-4343, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38407383

RESUMEN

Meiotic recombination is of central importance for the proper segregation of homologous chromosomes, but also for creating genetic diversity. It is initiated by the formation of double-strand breaks (DSBs) in DNA catalysed by evolutionarily conserved Spo11, together with additional protein partners. Difficulties in purifying the Spo11 protein have limited the characterization of its biochemical properties and of its interactions with other DSB proteins. In this study, we have purified fragments of Spo11 and show for the first time that Spo11 can physically interact with Mre11 and modulates its DNA binding, bridging, and nuclease activities. The interaction of Mre11 with Spo11 requires its far C-terminal region, which is in line with the severe meiotic phenotypes of various mre11 mutations located at the C-terminus. Moreover, calibrated ChIP for Mre11 shows that Spo11 promotes Mre11 recruitment to chromatin, independent of DSB formation. A mutant deficient in Spo11 interaction severely reduces the association of Mre11 with meiotic chromatin. Consistent with the reduction of Mre11 foci in this mutant, it strongly impedes DSB formation, leading to spore death. Our data provide evidence that physical interaction between Spo11 and Mre11, together with end-bridging, promote normal recruitment of Mre11 to hotspots and DSB formation.


Asunto(s)
Cromatina , Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas , Meiosis , Proteínas de Saccharomyces cerevisiae , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Meiosis/genética , Mutación , Unión Proteica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
Nat Commun ; 14(1): 6751, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875529

RESUMEN

Biomolecular polyelectrolyte complexes can be formed between oppositely charged intrinsically disordered regions (IDRs) of proteins or between IDRs and nucleic acids. Highly charged IDRs are abundant in the nucleus, yet few have been functionally characterized. Here, we show that a positively charged IDR within the human ATP-dependent DNA helicase Q4 (RECQ4) forms coacervates with G-quadruplexes (G4s). We describe a three-step model of charge-driven coacervation by integrating equilibrium and kinetic binding data in a global numerical model. The oppositely charged IDR and G4 molecules form a complex in the solution that follows a rapid nucleation-growth mechanism leading to a dynamic equilibrium between dilute and condensed phases. We also discover a physical interaction with Replication Protein A (RPA) and demonstrate that the IDR can switch between the two extremes of the structural continuum of complexes. The structural, kinetic, and thermodynamic profile of its interactions revealed a dynamic disordered complex with nucleic acids and a static ordered complex with RPA protein. The two mutually exclusive binding modes suggest a regulatory role for the IDR in RECQ4 function by enabling molecular handoffs. Our study extends the functional repertoire of IDRs and demonstrates a role of polyelectrolyte complexes involved in G4 binding.


Asunto(s)
G-Cuádruplex , Proteínas Intrínsecamente Desordenadas , RecQ Helicasas , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Ácidos Nucleicos , Polielectrolitos , RecQ Helicasas/metabolismo
8.
BMC Biol ; 21(1): 110, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37194054

RESUMEN

BACKGROUND: DNA-protein cross-links (DPCs) are one of the most deleterious DNA lesions, originating from various sources, including enzymatic activity. For instance, topoisomerases, which play a fundamental role in DNA metabolic processes such as replication and transcription, can be trapped and remain covalently bound to DNA in the presence of poisons or nearby DNA damage. Given the complexity of individual DPCs, numerous repair pathways have been described. The protein tyrosyl-DNA phosphodiesterase 1 (Tdp1) has been demonstrated to be responsible for removing topoisomerase 1 (Top1). Nevertheless, studies in budding yeast have indicated that alternative pathways involving Mus81, a structure-specific DNA endonuclease, could also remove Top1 and other DPCs. RESULTS: This study shows that MUS81 can efficiently cleave various DNA substrates modified by fluorescein, streptavidin or proteolytically processed topoisomerase. Furthermore, the inability of MUS81 to cleave substrates bearing native TOP1 suggests that TOP1 must be either dislodged or partially degraded prior to MUS81 cleavage. We demonstrated that MUS81 could cleave a model DPC in nuclear extracts and that depletion of TDP1 in MUS81-KO cells induces sensitivity to the TOP1 poison camptothecin (CPT) and affects cell proliferation. This sensitivity is only partially suppressed by TOP1 depletion, indicating that other DPCs might require the MUS81 activity for cell proliferation. CONCLUSIONS: Our data indicate that MUS81 and TDP1 play independent roles in the repair of CPT-induced lesions, thus representing new therapeutic targets for cancer cell sensitisation in combination with TOP1 inhibitors.


Asunto(s)
Proteínas de Unión al ADN , Endonucleasas , Hidrolasas Diéster Fosfóricas , Proteínas de Saccharomyces cerevisiae , Daño del ADN , Reparación del ADN , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo
9.
iScience ; 25(11): 105439, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36388968

RESUMEN

During meiosis, programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination. DMC1, a conserved recombinase, plays a central role in this process. DMC1 promotes DNA strand exchange between homologous chromosomes, thus creating the physical linkage between them. Its function is regulated not only by several accessory proteins but also by bivalent ions. Here, we show that whereas calcium ions in the presence of ATP cause a conformational change within DMC1, stimulating its DNA binding and D-loop formation, they inhibit the extension of the invading strand within the D-loop. Based on structural studies, we have generated mutants of two highly conserved amino acids - E162 and D317 - in human DMC1, which are deficient in calcium regulation. In vivo studies of their yeast homologues further showed that they exhibit severe defects in meiosis, thus emphasizing the importance of calcium ions in the regulation of DMC1 function and meiotic recombination.

10.
Nat Commun ; 12(1): 5545, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545070

RESUMEN

The RAD51 recombinase assembles as helical nucleoprotein filaments on single-stranded DNA (ssDNA) and mediates invasion and strand exchange with homologous duplex DNA (dsDNA) during homologous recombination (HR), as well as protection and restart of stalled replication forks. Strand invasion by RAD51-ssDNA complexes depends on ATP binding. However, RAD51 can bind ssDNA in non-productive ADP-bound or nucleotide-free states, and ATP-RAD51-ssDNA complexes hydrolyse ATP over time. Here, we define unappreciated mechanisms by which the RAD51 paralog complex RFS-1/RIP-1 limits the accumulation of RAD-51-ssDNA complexes with unfavorable nucleotide content. We find RAD51 paralogs promote the turnover of ADP-bound RAD-51 from ssDNA, in striking contrast to their ability to stabilize productive ATP-bound RAD-51 nucleoprotein filaments. In addition, RFS-1/RIP-1 inhibits binding of nucleotide-free RAD-51 to ssDNA. We propose that 'nucleotide proofreading' activities of RAD51 paralogs co-operate to ensure the enrichment of active, ATP-bound RAD-51 filaments on ssDNA to promote HR.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Nucleótidos/metabolismo , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Homología de Secuencia de Aminoácido , Adenosina Difosfato/farmacología , Adenosina Trifosfato/farmacología , Animales , ADN de Cadena Simple/metabolismo , Fluorescencia , Interferometría , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Especificidad de la Especie
11.
Methods Mol Biol ; 2153: 483-502, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32840800

RESUMEN

In vitro analysis of posttranslational modifications such as sumoylation provides a great tool to not only identify the target proteins but also to characterize the specific effects of this modification on the protein features and uncover possible regulatory mechanism. In this chapter, we will describe the purification of yeast SUMO machinery proteins and their use to identify SUMO modification of target proteins in vitro. Furthermore, we will show several examples characterizing the effect of sumoylation on the biochemical activities of various proteins involved in homologous recombination (HR) that helped to better understand the regulatory role of this modification.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Recombinación Homóloga , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Sumoilación
12.
Nucleic Acids Res ; 49(1): 285-305, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33332547

RESUMEN

RECQ5 is one of five RecQ helicases found in humans and is thought to participate in homologous DNA recombination by acting as a negative regulator of the recombinase protein RAD51. Here, we use kinetic and single molecule imaging methods to monitor RECQ5 behavior on various nucleoprotein complexes. Our data demonstrate that RECQ5 can act as an ATP-dependent single-stranded DNA (ssDNA) motor protein and can translocate on ssDNA that is bound by replication protein A (RPA). RECQ5 can also translocate on RAD51-coated ssDNA and readily dismantles RAD51-ssDNA filaments. RECQ5 interacts with RAD51 through protein-protein contacts, and disruption of this interface through a RECQ5-F666A mutation reduces translocation velocity by ∼50%. However, RECQ5 readily removes the ATP hydrolysis-deficient mutant RAD51-K133R from ssDNA, suggesting that filament disruption is not coupled to the RAD51 ATP hydrolysis cycle. RECQ5 also readily removes RAD51-I287T, a RAD51 mutant with enhanced ssDNA-binding activity, from ssDNA. Surprisingly, RECQ5 can bind to double-stranded DNA (dsDNA), but it is unable to translocate. Similarly, RECQ5 cannot dismantle RAD51-bound heteroduplex joint molecules. Our results suggest that the roles of RECQ5 in genome maintenance may be regulated in part at the level of substrate specificity.


Asunto(s)
ADN de Cadena Simple/metabolismo , Recombinación Homóloga , Proteínas Motoras Moleculares/metabolismo , RecQ Helicasas/metabolismo , Imagen Individual de Molécula , Adenosina Trifosfato/metabolismo , ADN de Cadena Simple/ultraestructura , Humanos , Hidrólisis , Cinética , Microscopía de Fuerza Atómica , Proteínas Motoras Moleculares/ultraestructura , Mutación Missense , Mutación Puntual , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/ultraestructura , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/metabolismo , Proteína de Replicación A/metabolismo , Especificidad por Sustrato
13.
Cell Rep ; 33(12): 108543, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33357432

RESUMEN

DNA damage tolerance (DDT) and homologous recombination (HR) stabilize replication forks (RFs). RAD18/UBC13/three prime repair exonuclease 2 (TREX2)-mediated proliferating cell nuclear antigen (PCNA) ubiquitination is central to DDT, an error-prone lesion bypass pathway. RAD51 is the recombinase for HR. The RAD51 K133A mutation increased spontaneous mutations and stress-induced RF stalls and nascent strand degradation. Here, we report in RAD51K133A cells that this phenotype is reduced by expressing a TREX2 H188A mutation that deletes its exonuclease activity. In RAD51K133A cells, knocking out RAD18 or overexpressing PCNA reduces spontaneous mutations, while expressing ubiquitination-incompetent PCNAK164R increases mutations, indicating DDT as causal. Deleting TREX2 in cells deficient for the RF maintenance proteins poly(ADP-ribose) polymerase 1 (PARP1) or FANCB increased nascent strand degradation that was rescued by TREX2H188A, implying that TREX2 prohibits degradation independent of catalytic activity. A possible explanation for this occurrence is that TREX2H188A associates with UBC13 and ubiquitinates PCNA, suggesting a dual role for TREX2 in RF maintenance.


Asunto(s)
Replicación del ADN , Exodesoxirribonucleasas/metabolismo , Mutación , Fosfoproteínas/metabolismo , Recombinasa Rad51/metabolismo , Animales , Exodesoxirribonucleasas/genética , Humanos , Masculino , Ratones , Fosfoproteínas/genética , Recombinasa Rad51/biosíntesis , Recombinasa Rad51/genética , Transfección
14.
Sci Rep ; 10(1): 19422, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33173044

RESUMEN

Extracellular pH has been assumed to play little if any role in how bacteria respond to antibiotics and antibiotic resistance development. Here, we show that the intracellular pH of Escherichia coli equilibrates to the environmental pH following treatment with the DNA damaging antibiotic nalidixic acid. We demonstrate that this allows the environmental pH to influence the transcription of various DNA damage response genes and physiological processes such as filamentation. Using purified RecA and a known pH-sensitive mutant variant RecA K250R we show how pH can affect the biochemical activity of a protein central to control of the bacterial DNA damage response system. Finally, two different mutagenesis assays indicate that environmental pH affects antibiotic resistance development. Specifically, at environmental pH's greater than six we find that mutagenesis plays a significant role in producing antibiotic resistant mutants. At pH's less than or equal to 6 the genome appears more stable but extensive filamentation is observed, a phenomenon that has previously been linked to increased survival in the presence of macrophages.


Asunto(s)
Antibacterianos/farmacología , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/genética , Daño del ADN/efectos de la radiación , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/efectos de la radiación , Citometría de Flujo , Inestabilidad Genómica/efectos de la radiación , Concentración de Iones de Hidrógeno , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Ácido Nalidíxico/farmacología , Propidio/farmacología , Rifampin/farmacología , Rayos Ultravioleta
15.
Nature ; 587(7833): 303-308, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33057192

RESUMEN

Telomeres-repeated, noncoding nucleotide motifs and associated proteins that are found at the ends of eukaryotic chromosomes-mediate genome stability and determine cellular lifespan1. Telomeric-repeat-containing RNA (TERRA) is a class of long noncoding RNAs (lncRNAs) that are transcribed from chromosome ends2,3; these RNAs in turn regulate telomeric chromatin structure and telomere maintenance through the telomere-extending enzyme telomerase4-6 and homology-directed DNA repair7,8. The mechanisms by which TERRA is recruited to chromosome ends remain poorly defined. Here we develop a reporter system with which to dissect the underlying mechanisms, and show that the UUAGGG repeats of TERRA are both necessary and sufficient to target TERRA to chromosome ends. TERRA preferentially associates with short telomeres through the formation of telomeric DNA-RNA hybrid (R-loop) structures that can form in trans. Telomere association and R-loop formation trigger telomere fragility and are promoted by the recombinase RAD51 and its interacting partner BRCA2, but counteracted by the RNA-surveillance factors RNaseH1 and TRF1. RAD51 physically interacts with TERRA and catalyses R-loop formation with TERRA in vitro, suggesting a direct involvement of this DNA recombinase in the recruitment of TERRA by strand invasion. Together, our findings reveal a RAD51-dependent pathway that governs TERRA-mediated R-loop formation after transcription, providing a mechanism for the recruitment of lncRNAs to new loci in trans.


Asunto(s)
Estructuras R-Loop , ARN Largo no Codificante/química , Recombinasa Rad51/metabolismo , Telómero/química , Telómero/metabolismo , Secuencia de Bases , Biocatálisis , Genes Reporteros , Células HeLa , Humanos , ARN Largo no Codificante/genética , Ribonucleasa H/metabolismo , Telómero/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo
16.
Mol Oncol ; 14(10): 2487-2503, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32579780

RESUMEN

As treatment options for patients with incurable metastatic castration-resistant prostate cancer (mCRPC) are considerably limited, novel effective therapeutic options are needed. Checkpoint kinase 1 (CHK1) is a highly conserved protein kinase implicated in the DNA damage response (DDR) pathway that prevents the accumulation of DNA damage and controls regular genome duplication. CHK1 has been associated with prostate cancer (PCa) induction, progression, and lethality; hence, CHK1 inhibitors SCH900776 (also known as MK-8776) and the more effective SCH900776 analog MU380 may have clinical applications in the therapy of PCa. Synergistic induction of DNA damage with CHK1 inhibition represents a promising therapeutic approach that has been tested in many types of malignancies, but not in chemoresistant mCRPC. Here, we report that such therapeutic approach may be exploited using the synergistic action of the antimetabolite gemcitabine (GEM) and CHK1 inhibitors SCH900776 and MU380 in docetaxel-resistant (DR) mCRPC. Given the results, both CHK1 inhibitors significantly potentiated the sensitivity to GEM in a panel of chemo-naïve and matched DR PCa cell lines under 2D conditions. MU380 exhibited a stronger synergistic effect with GEM than clinical candidate SCH900776. MU380 alone or in combination with GEM significantly reduced spheroid size and increased apoptosis in all patient-derived xenograft 3D cultures, with a higher impact in DR models. Combined treatment induced premature mitosis from G1 phase resulting in the mitotic catastrophe as a prestage of apoptosis. Finally, treatment by MU380 alone, or in combination with GEM, significantly inhibited tumor growth of both PC339-DOC and PC346C-DOC xenograft models in mice. Taken together, our data suggest that metabolically robust and selective CHK1 inhibitor MU380 can bypass docetaxel resistance and improve the effectiveness of GEM in DR mCRPC models. This approach might allow for dose reduction of GEM and thereby minimize undesired toxicity and may represent a therapeutic option for patients with incurable DR mCRPC.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Desoxicitidina/análogos & derivados , Docetaxel/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Mitosis , Piperidinas/farmacología , Neoplasias de la Próstata/patología , Pirazoles/farmacología , Pirimidinas/farmacología , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Desoxicitidina/farmacología , Humanos , Masculino , Ratones SCID , Mitosis/efectos de los fármacos , Piperidinas/química , Pirazoles/química , Pirimidinas/química , Fase S/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
17.
Nucleic Acids Res ; 48(2): 694-708, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31799622

RESUMEN

The proper repair of deleterious DNA lesions such as double strand breaks prevents genomic instability and carcinogenesis. In yeast, the Rad52 protein mediates DSB repair via homologous recombination. In mammalian cells, despite the presence of the RAD52 protein, the tumour suppressor protein BRCA2 acts as the predominant mediator during homologous recombination. For decades, it has been believed that the RAD52 protein played only a back-up role in the repair of DSBs performing an error-prone single strand annealing (SSA). Recent studies have identified several new functions of the RAD52 protein and have drawn attention to its important role in genome maintenance. Here, we show that RAD52 activities are enhanced by interacting with a small and highly acidic protein called DSS1. Binding of DSS1 to RAD52 changes the RAD52 oligomeric conformation, modulates its DNA binding properties, stimulates SSA activity and promotes strand invasion. Our work introduces for the first time RAD52 as another interacting partner of DSS1 and shows that both proteins are important players in the SSA and BIR pathways of DSB repair.


Asunto(s)
Carcinogénesis/genética , Recombinación Homóloga/genética , Complejo de la Endopetidasa Proteasomal/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína BRCA2/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Genoma Humano/genética , Inestabilidad Genómica/genética , Humanos , Osteosarcoma/genética , Osteosarcoma/patología , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
Clin Epigenetics ; 11(1): 121, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31439048

RESUMEN

BACKGROUND: Epigenetic regulation is important in hematopoiesis, but the involvement of histone variants is poorly understood. Myelodysplastic syndromes (MDS) are heterogeneous clonal hematopoietic stem cell (HSC) disorders characterized by ineffective hematopoiesis. MacroH2A1.1 is a histone H2A variant that negatively correlates with the self-renewal capacity of embryonic, adult, and cancer stem cells. MacroH2A1.1 is a target of the frequent U2AF1 S34F mutation in MDS. The role of macroH2A1.1 in hematopoiesis is unclear. RESULTS: MacroH2A1.1 mRNA levels are significantly decreased in patients with low-risk MDS presenting with chromosomal 5q deletion and myeloid cytopenias and tend to be decreased in MDS patients carrying the U2AF1 S34F mutation. Using an innovative mouse allele lacking the macroH2A1.1 alternatively spliced exon, we investigated whether macroH2A1.1 regulates HSC homeostasis and differentiation. The lack of macroH2A1.1 decreased while macroH2A1.1 haploinsufficiency increased HSC frequency upon irradiation. Moreover, bone marrow transplantation experiments showed that both deficiency and haploinsufficiency of macroH2A1.1 resulted in enhanced HSC differentiation along the myeloid lineage. Finally, RNA-sequencing analysis implicated macroH2A1.1-mediated regulation of ribosomal gene expression in HSC homeostasis. CONCLUSIONS: Together, our findings suggest a new epigenetic process contributing to hematopoiesis regulation. By combining clinical data with a discrete mutant mouse model and in vitro studies of human and mouse cells, we identify macroH2A1.1 as a key player in the cellular and molecular features of MDS. These data justify the exploration of macroH2A1.1 and associated proteins as therapeutic targets in hematological malignancies.


Asunto(s)
Anemia Macrocítica/genética , Regulación hacia Abajo , Células Madre Hematopoyéticas/citología , Histonas/genética , Síndromes Mielodisplásicos/genética , Animales , Diferenciación Celular , Deleción Cromosómica , Cromosomas Humanos Par 5/genética , Modelos Animales de Enfermedad , Epigénesis Genética , Haploinsuficiencia , Células Madre Hematopoyéticas/química , Humanos , Ratones , Mutación , Sitios de Empalme de ARN , Análisis de Secuencia de ARN
19.
EMBO Rep ; 20(9): e47592, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31347271

RESUMEN

CDK12 is a kinase associated with elongating RNA polymerase II (RNAPII) and is frequently mutated in cancer. CDK12 depletion reduces the expression of homologous recombination (HR) DNA repair genes, but comprehensive insight into its target genes and cellular processes is lacking. We use a chemical genetic approach to inhibit analog-sensitive CDK12, and find that CDK12 kinase activity is required for transcription of core DNA replication genes and thus for G1/S progression. RNA-seq and ChIP-seq reveal that CDK12 inhibition triggers an RNAPII processivity defect characterized by a loss of mapped reads from 3'ends of predominantly long, poly(A)-signal-rich genes. CDK12 inhibition does not globally reduce levels of RNAPII-Ser2 phosphorylation. However, individual CDK12-dependent genes show a shift of P-Ser2 peaks into the gene body approximately to the positions where RNAPII occupancy and transcription were lost. Thus, CDK12 catalytic activity represents a novel link between regulation of transcription and cell cycle progression. We propose that DNA replication and HR DNA repair defects as a consequence of CDK12 inactivation underlie the genome instability phenotype observed in many cancers.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética , Reparación del ADN/genética , Reparación del ADN/fisiología , Replicación del ADN/genética , Replicación del ADN/fisiología , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Células HCT116 , Humanos , Fosforilación , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
20.
Commun Biol ; 2: 174, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31098407

RESUMEN

Dna2 is an essential nuclease-helicase that acts in several distinct DNA metabolic pathways including DNA replication and recombination. To balance these functions and prevent unscheduled DNA degradation, Dna2 activities must be regulated. Here we show that Saccharomyces cerevisiae Dna2 function is controlled by sumoylation. We map the sumoylation sites to the N-terminal regulatory domain of Dna2 and show that in vitro sumoylation of recombinant Dna2 impairs its nuclease but not helicase activity. In cells, the total levels of the non-sumoylatable Dna2 variant are elevated. However, non-sumoylatable Dna2 shows impaired nuclear localization and reduced recruitment to foci upon DNA damage. Non-sumoylatable Dna2 reduces the rate of DNA end resection, as well as impedes cell growth and cell cycle progression through S phase. Taken together, these findings show that in addition to Dna2 phosphorylation described previously, Dna2 sumoylation is required for the homeostasis of the Dna2 protein function to promote genome stability.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Daño del ADN , ADN Helicasas/genética , Replicación del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , Estabilidad de Enzimas , Cinética , Redes y Vías Metabólicas , Fosforilación , Dominios Proteicos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Sumoilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...