Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38777155

RESUMEN

BACKGROUND: Mast cell-derived mediators induce vasodilatation and fluid extravasation, leading to cardiovascular failure in severe anaphylaxis. We previously revealed a synergistic interaction between the cytokine IL-4 and the mast cell-derived mediator histamine in modulating vascular endothelial (VE) dysfunction and severe anaphylaxis. The mechanism by which IL-4 exacerbates histamine-induced VE dysfunction and severe anaphylaxis is unknown. OBJECTIVE: We sought to identify the IL-4-induced molecular processes regulating the amplification of histamine-induced VE barrier dysfunction and the severity of IgE-mediated anaphylactic reactions. METHODS: RNA sequencing, Western blot, Ca2+ imaging, and barrier functional analyses were performed on the VE cell line (EA.hy926). Pharmacologic degraders (selective proteolysis-targeting chimera) and genetic (lentiviral short hairpin RNA) inhibitors were used to determine the roles of signal transducer and activator of transcription 3 (STAT3) and STAT6 in conjunction with in vivo model systems of histamine-induced hypovolemic shock. RESULTS: IL-4 enhancement of histamine-induced VE barrier dysfunction was associated with increased VE-cadherin degradation, intracellular calcium flux, and phosphorylated Src levels and required transcription and de novo protein synthesis. RNA sequencing analyses of IL-4-stimulated VE cells identified dysregulation of genes involved in cell proliferation, cell development, and cell growth, and transcription factor motif analyses revealed a significant enrichment of differential expressed genes with putative STAT3 and STAT6 motif. IL-4 stimulation in EA.hy926 cells induced both serine residue 727 and tyrosine residue 705 phosphorylation of STAT3. Genetic and pharmacologic ablation of VE STAT3 activity revealed a role for STAT3 in basal VE barrier function; however, IL-4 enhancement and histamine-induced VE barrier dysfunction was predominantly STAT3 independent. In contrast, IL-4 enhancement and histamine-induced VE barrier dysfunction was STAT6 dependent. Consistent with this finding, pharmacologic knockdown of STAT6 abrogated IL-4-mediated amplification of histamine-induced hypovolemia. CONCLUSIONS: These studies unveil a novel role of the IL-4/STAT6 signaling axis in the priming of VE cells predisposing to exacerbation of histamine-induced anaphylaxis.

3.
J Allergy Clin Immunol ; 152(6): 1550-1568, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37652141

RESUMEN

BACKGROUND: Basal zone hyperplasia (BZH) and dilated intercellular spaces (DISs) are thought to contribute to the clinical manifestations of eosinophilic esophagitis (EoE); however, the molecular pathways that drive BZH remain largely unexplored. OBJECTIVE: We sought to define the role of IL-13-induced transcriptional programs in esophageal epithelial proliferation in EoE. METHODS: We performed RNA sequencing, bioinformatics, Western blot, reverse transcriptase quantitative PCR, and histologic analyses on esophageal biopsies from healthy control and patients with EoE, primary esophageal cells derived from patients with EoE, and IL-13-stimulated esophageal epithelial keratinocytes grown at the air-liquid interface (EPC2-ALI). Genetic (shRNA) and pharmacologic (proteolysis-targeting chimera degrader) approaches and in vivo model of IL-13-induced esophageal epithelial remodeling (Krt5-rtTA x tetO-IL-13Tg) were used to define the role of signal transducer and activator of transcription 3 (STAT3) and STAT6 and secreted frizzled-related protein 1 (SFRP1) in esophageal epithelial proliferation. RESULTS: RNA-sequencing analysis of esophageal biopsies (healthy control vs EoE) and EPC2-ALI revealed 82 common differentially expressed genes that were enriched for putative STAT3 target genes. In vitro and in vivo analyses revealed a link between IL-13-induced STAT3 and STAT6 phosphorylation, SFRP1 mRNA expression, and esophageal epithelial proliferation. In vitro studies showed that IL-13-induced esophageal epithelial proliferation was STAT3-dependent and regulated by the STAT3 target SFRP1. SFRP1 mRNA is increased in esophageal biopsies from patients with active EoE compared with healthy controls or patients in remission and identifies an esophageal suprabasal epithelial cell subpopulation that uniquely expressed the core EoE proinflammatory transcriptome genes (CCL26, ALOX15, CAPN14, ANO1, and TNFAIP6). CONCLUSIONS: These studies identify SFRP1 as a key regulator of IL-13-induced and STAT3-dependent esophageal proliferation and BZH in EoE and link SFRP1+ esophageal epithelial cells with the proinflammatory and epithelial remodeling response in EoE.


Asunto(s)
Esofagitis Eosinofílica , Humanos , Esofagitis Eosinofílica/patología , Interleucina-13/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Células Epiteliales/metabolismo , ARN Mensajero/metabolismo , Proliferación Celular
4.
Clin Exp Allergy ; 53(5): 536-549, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36756745

RESUMEN

INTRODUCTION: Food allergic reactions can be severe and potentially life-threatening and the underlying immunological processes that contribute to the severity of reactions are poorly understood. The aim of this study is to integrate bulk RNA-sequencing of human and mouse peripheral blood mononuclear cells during food allergic reactions and in vivo mouse models of food allergy to identify dysregulated immunological processes associated with severe food allergic reactions. METHODS: Bulk transcriptomics of whole blood from human and mouse following food allergic reactions combined with integrative differential expressed gene bivariate and module eigengene network analyses to identify the whole blood transcriptome associated with food allergy severity. In vivo validation immune cell and gene expression in mice following IgE-mediated reaction. RESULTS: Bulk transcriptomics of whole blood from mice with different severity of food allergy identified gene ontology (GO) biological processes associated with innate and inflammatory immune responses, dysregulation of MAPK and NFkB signalling and identified 429 genes that correlated with reaction severity. Utilizing two independent human cohorts, we identified 335 genes that correlated with severity of peanut-induced food allergic reactions. Mapping mouse food allergy severity transcriptome onto the human transcriptome revealed 11 genes significantly dysregulated and correlated with severity. Analyses of whole blood from mice undergoing an IgE-mediated reaction revealed a rapid change in blood leukocytes particularly inflammatory monocytes (Ly6Chi Ly6G- ) and neutrophils that was associated with changes in CLEC4E, CD218A and GPR27 surface expression. CONCLUSIONS: Collectively, IgE-mediated food allergy severity is associated with a rapid innate inflammatory response associated with acute cellular stress processes and dysregulation of peripheral blood inflammatory myeloid cell frequencies.


Asunto(s)
Fenómenos Biológicos , Hipersensibilidad a los Alimentos , Hipersensibilidad al Cacahuete , Humanos , Animales , Ratones , Leucocitos Mononucleares , Hipersensibilidad a los Alimentos/genética , Alérgenos , Inmunoglobulina E , Receptores Acoplados a Proteínas G
5.
J Allergy Clin Immunol ; 150(2): 425-439.e3, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35288169

RESUMEN

BACKGROUND: A human study, Learning Early About Peanut Allergy (LEAP), showed that early introduction of peanut products decreases the prevalence of peanut allergy among children. However, the immunologic mechanisms mediating the protective effects of consuming peanut products are not well understood. OBJECTIVE: The objective was to develop a mouse model that simulates the LEAP study and investigate the underlying mechanisms for the study observations. METHODS: Adult naive BALB/c mice were fed a commercial peanut butter product (Skippy) or buffer control and concomitantly exposed to peanut flour through the airway or skin to mimic environmental exposure. The animals were analyzed for anaphylactic reaction and by molecular and immunologic approaches. RESULTS: After exposure to peanut flour through the airway or skin, naive mice developed peanut allergy, as demonstrated by acute and systemic anaphylaxis in response to challenge with peanut extract. Ingestion of Skippy, however, nearly abolished the increase in peanut-specific IgE and IgG and protected animals from developing anaphylaxis. Skippy-fed mice showed reduced numbers of T follicular helper (Tfh) cells and germinal center B cells in their draining lymph nodes, and single-cell RNA sequencing revealed a CD4+ T-cell population expressing cytotoxic T lymphocyte-associated protein 4 (CTLA-4) in these animals. Critically, blocking CTLA-4 with antibody increased levels of peanut-specific antibodies and reversed the protective effects of Skippy. CONCLUSION: Ingestion of a peanut product protects mice from peanut allergy induced by environmental exposure to peanuts, and the CTLA-4 pathway, which regulates Tfh cell responses, likely plays a pivotal role in this protection.


Asunto(s)
Anafilaxia , Antígeno CTLA-4 , Hipersensibilidad al Cacahuete , Alérgenos , Anafilaxia/prevención & control , Animales , Arachis , Antígeno CTLA-4/metabolismo , Modelos Animales de Enfermedad , Exposición a Riesgos Ambientales/efectos adversos , Ratones , Ratones Endogámicos BALB C , Hipersensibilidad al Cacahuete/prevención & control
6.
Immunol Allergy Clin North Am ; 41(2): 143-163, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33863476

RESUMEN

Food allergies have been rising in prevalence since the 1990s, imposing substantial physical, psychosocial, and economic burdens on affected patients and their families. Until recently, the only therapy for food allergy was strict avoidance of the allergenic food. Recent advances in translational studies, however, have led to insights into allergic sensitization and tolerance. This article provides an overview of cutting-edge research into food allergy and immune tolerance mechanisms utilizing mouse models, human studies, and systems biology approaches. This research is being translated and implemented in the clinical setting to improve diagnosis and reduce food allergy's public health burden.


Asunto(s)
Hipersensibilidad a los Alimentos , Investigación Biomédica Traslacional , Animales , Hipersensibilidad a los Alimentos/diagnóstico , Hipersensibilidad a los Alimentos/epidemiología , Hipersensibilidad a los Alimentos/terapia , Humanos , Tolerancia Inmunológica , Ratones , Prevalencia
7.
Allergy ; 75(12): 3100-3111, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33068299

RESUMEN

In the past decade, research in the molecular and cellular underpinnings of basic and clinical immunology has significantly advanced our understanding of allergic disorders, allowing scientists and clinicians to diagnose and treat disorders such as asthma, allergic and nonallergic rhinitis, and food allergy. In this review, we discuss several significant recent developments in basic and clinical research as well as important future research directions in allergic inflammation. Certain key regulatory cytokines, genes and molecules have recently been shown to play key roles in allergic disorders. For example, interleukin-33 (IL-33) plays an important role in refractory disorders such as asthma, allergic rhinitis and food allergy, mainly by inducing T helper (Th) 2 immune responses and clinical trials with IL-33 inhibitors are underway in food allergy. We discuss interleukin 4 receptor pathways, which recently have been shown to play a critical role among the allergic inflammatory pathways that drive allergic disorders and pathogenesis. Further, the cytokine thymic stromal lymphopoietin (TSLP) has recently been shown as a factor in maintaining immune homeostasis and regulating type 2 inflammatory responses at mucosal barriers in allergic inflammation and targeting TSLP-mediated signalling is considered an attractive therapeutic strategy. In addition, new findings establish an important T cell-intrinsic role of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) proteolytic activity in the suppression of autoimmune responses. We have seen how mutations in the filaggrin gene are a significant risk factor for allergic diseases such as atopic dermatitis, asthma, allergic rhinitis, food allergy, contact allergy, and hand eczema. We are only beginning to understand the mechanisms by which the human microbiota may be regulating the immune system, and how sudden changes in the composition of the microbiota may have profound effects, linked with an increased risk of developing chronic inflammatory disorders, including allergies. New research has shown the important but complex role monocytes play in disorders such as food allergies. Finally, we discuss some of the new directions of research in this area, particularly the important use of biologicals in oral immunotherapy, advances in gene therapy, multifood therapy, novel diagnostics in diagnosing allergic disorders and the central role that omics play in creating molecular signatures and biomarkers of allergic disorders such as food allergy. Such exciting new developments and advances have significantly moved forth our ability to understand the mechanisms underlying allergic diseases for improved patient care.


Asunto(s)
Asma , Dermatitis Atópica , Hipersensibilidad a los Alimentos , Rinitis Alérgica , Citocinas , Proteínas Filagrina , Hipersensibilidad a los Alimentos/diagnóstico , Hipersensibilidad a los Alimentos/terapia , Humanos , Inflamación , Rinitis Alérgica/diagnóstico , Rinitis Alérgica/terapia
8.
Ann Allergy Asthma Immunol ; 125(5): 507-516, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32702411

RESUMEN

OBJECTIVE: The origins of allergic diseases have traditionally been explained by immunoglobulin E-mediated immune responses to account for asthma, atopic dermatitis, atopic rhinitis, and food allergy. Research insights into disease origins support a broader array of factors that predispose, initiate, or exacerbate altered immunity in allergic diseases, such as (1) inherent epithelial barrier dysfunction; (2) loss of immune tolerance; (3) disturbances in the gut; and (4) organ-specific microbiomes, diet, and age. Here, we discuss these influences that together form a better understanding of allergy as a systems disease. DATA SOURCES: We summarize recent advances in epithelial dysfunction, environmental influences, inflammation, infection, alterations in the specific microbiome, and inherent genetic predisposition. STUDY SELECTIONS: We performed a literature search targeting primary and review articles. RESULTS: We explored microbial-epithelial-immune interactions underlying the early-life origins of allergic disorders and evaluated immune mechanisms suggesting novel disease prevention or intervention strategies. Damage to epithelial surfaces lies at the origin of various manifestations of allergic disease. As a sensor of environmental stimuli, the epithelium of the lungs, gut, and skin is affected by an altered microbiome, air pollution, food allergens in a changed diet, and chemicals in modern detergents. This collectively leads to alterations of lung, skin, or gut epithelial surfaces, driving a type 2 immune response that underlies atopic diseases. Treatment and prevention of allergic diseases include biologics, oral desensitization, targeted gut microbiome alterations, and changes in behavior. CONCLUSION: Understanding the spectrum of allergy as a systems disease will allow us to better define the mechanisms of allergic disorders and improve their treatment.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Hipersensibilidad/inmunología , Mucosa Intestinal/inmunología , Mucosa Respiratoria/inmunología , Piel/inmunología , Asma/inmunología , Asma/patología , Dermatitis Atópica/inmunología , Dermatitis Atópica/patología , Progresión de la Enfermedad , Epitelio/inmunología , Epitelio/metabolismo , Hipersensibilidad a los Alimentos/inmunología , Hipersensibilidad a los Alimentos/patología , Humanos , Mucosa Intestinal/microbiología , Permeabilidad , Rinitis Alérgica/inmunología , Rinitis Alérgica/patología , Piel/patología , Resultado del Tratamiento
9.
J Immunol ; 204(12): 3086-3096, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32366582

RESUMEN

Peanut allergy is a growing public concern; however, little is known about the immunological mechanism(s) that initiate the disease process. Our knowledge is also limited regarding the role of group 2 innate lymphoid cells (ILC2s) in regulating humoral immunity. To fill these major gaps in our knowledge, we investigated the immunological mechanisms involved in peanut allergen sensitization by using mouse models. To mimic environmental exposure in humans, naive BALB/c mice were exposed to peanut flour by inhalation without any exogenous adjuvants. When exposed to peanut flour, naive mice developed T follicular helper (Tfh) cells in their lung draining lymph nodes and produced IgE Abs to peanuts. Mice deficient in IL-13 showed decreased numbers of Tfh cells and germinal center B cells and produced significantly fewer IgE Abs. IL-13 was necessary and sufficient for induction of CD11c+ MHC class IIhi dendritic cells that are implicated in Tfh cell development. Importantly, lung ILC2s served as a predominant early source of IL-13 when naive mice were exposed to peanut flour. Furthermore, mice that are deficient in lung ILC2s by bone marrow transfer from Rora sg/sg mice or by genetic manipulation produced significantly fewer IgE Abs to peanuts compared with control mice. These findings suggest lung ILC2s that serve as a rapid source of IL-13 upon allergen exposure play a major role in Tfh cell development, IgE Ab production, and initiation of peanut allergy.


Asunto(s)
Arachis/inmunología , Inmunidad Innata/inmunología , Linfocitos/inmunología , Hipersensibilidad al Cacahuete/inmunología , Células T Auxiliares Foliculares/inmunología , Alérgenos/inmunología , Animales , Linfocitos B , Femenino , Inmunidad Humoral/inmunología , Inmunoglobulina E/inmunología , Interleucina-13/inmunología , Pulmón/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
10.
J Allergy Clin Immunol ; 142(4): 1144-1158.e8, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29247716

RESUMEN

BACKGROUND: Little is currently known regarding the immunologic mechanism(s) that initiate peanut allergy. Notably, peanut proteins have been detected in house dust, and their levels correlate with peanut allergy prevalence. OBJECTIVE: This study aimed to develop a new mouse model for peanut allergy and to investigate the immunologic mechanisms involved in peanut allergen sensitization. METHODS: To mimic environmental exposure, naive mice were exposed to peanut flour by inhalation for up to 4 weeks. We then analyzed serum levels of IgE antibody and challenged mice with peanut proteins. Immunological mechanisms involved in sensitization were analyzed using cytokine reporter mice, an adoptive cell transfer model, and gene knockout mice. RESULTS: When exposed to peanut flour by inhalation, both BALB/c and C57BL/6 mice developed peanut allergy, as demonstrated by the presence of peanut-specific IgE antibodies and manifestation of acute anaphylaxis on challenge. A large number of follicular helper T (Tfh) cells were also detected in draining lymph nodes of allergic mice. These cells produced IL-4 and IL-21, and they more robustly promoted peanut-specific IgE production than Th2 cells did. Genetic depletion of Tfh cells decreased IgE antibody levels and protected mice from anaphylaxis, without affecting Th2 cells. Furthermore, peanut flour exposure increased lung levels of IL-1α and IL-1ß, and mice deficient in the receptor for these cytokines showed a significant decrease in Tfh cells compared with in wild-type mice. CONCLUSIONS: Tfh cells play a key role in peanut allergy, and the IL-1 pathway is involved in the Tfh response to peanut allergen exposure.


Asunto(s)
Citocinas/inmunología , Modelos Animales de Enfermedad , Hipersensibilidad al Cacahuete/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Administración por Inhalación , Alérgenos/inmunología , Animales , Arachis/inmunología , Femenino , Inmunoglobulina E/inmunología , Pulmón/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal
11.
BMC Res Notes ; 10(1): 720, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-29221488

RESUMEN

OBJECTIVE: Recombinant adeno-associated virus (AAV)-based vectors are characterized by their robust and safe transgene delivery. The CRISPR/Cas9 and guide RNA (gRNA) system present a promising genome-editing platform, and a recent development of a shorter Cas9 enzyme from Staphylococcus aureus (SaCas9) allows generation of high titer single AAV vectors which carry both saCas9- and gRNA-expression cassettes. Here, we used two AAV-SaCas9 vectors with distinct GFP-targeted gRNA sequences and determined the impact of AAV-SaCas9-gRNA vector treatment in a single cell clone carrying a GFP-expression cassette. RESULTS: Our results showed comparable GFP knockout efficiencies (40-50%) upon a single low-dose infection. Three consecutive transductions of 25-fold higher doses of vectors showed 80% GFP knockout efficiency. To analyze the "AAV-SaCas9-resistant cell population", we sorted the residual GFP-positive cells and assessed their permissiveness to super-infection with two AAV-Cas9-GFP vectors. We found the sorted cells were significantly more resistant to the GFP knockout mediated by the same AAV vector, but not by the other GFP-targeted AAV vector. Our data therefore demonstrate highly efficient genome-editing by the AAV-SaCas9-gRNA vector system. Differential susceptibilities of single cell-derived cells to the AAV-SaCas9-gRNA-mediated genome editing may represent a formidable barrier to achieve 100% genome editing efficiency by this vector system.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Dependovirus , Endonucleasas/genética , Secuenciación del Exoma , Edición Génica , Vectores Genéticos , ARN Guía de Kinetoplastida , Staphylococcus aureus/enzimología , Proteínas Bacterianas , Proteína 9 Asociada a CRISPR , Línea Celular , Susceptibilidad a Enfermedades , Proteínas Fluorescentes Verdes , Células HEK293 , Humanos
12.
Cancer Res ; 77(23): 6667-6678, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28993412

RESUMEN

Ligation of programmed cell death-1 (PD-1) in the tumor microenvironment is known to inhibit effective adaptive antitumor immunity. Blockade of PD-1 in humans has resulted in impressive, durable regression responses in select tumor types. However, durable responses have been elusive in ovarian cancer patients. PD-1 was recently shown to be expressed on and thereby impair the functions of tumor-infiltrating murine and human myeloid dendritic cells (TIDC) in ovarian cancer. In the present work, we characterize the regulation of PD-1 expression and the effects of PD-1 blockade on TIDC. Treatment of TIDC and bone marrow-derived dendritic cells (DC) with IL10 led to increased PD-1 expression. Both groups of DCs also responded to PD-1 blockade by increasing production of IL10. Similarly, treatment of ovarian tumor-bearing mice with PD-1 blocking antibody resulted in an increase in IL10 levels in both serum and ascites. While PD-1 blockade or IL10 neutralization as monotherapies were inefficient, combination of these two led to improved survival and delayed tumor growth; this was accompanied by augmented antitumor T- and B-cell responses and decreased infiltration of immunosuppressive MDSC. Taken together, our findings implicate compensatory release of IL10 as one of the adaptive resistance mechanisms that undermine the efficacy of anti-PD-1 (or anti-PD-L1) monotherapies and prompt further studies aimed at identifying such resistance mechanisms. Cancer Res; 77(23); 6667-78. ©2017 AACR.


Asunto(s)
Interleucina-10/metabolismo , Interleucina-10/farmacología , Neoplasias Ováricas/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/biosíntesis , Animales , Linfocitos B/inmunología , Línea Celular Tumoral , Células Dendríticas/inmunología , Resistencia a Antineoplásicos , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Ováricas/tratamiento farmacológico , Interferencia de ARN , ARN Interferente Pequeño/genética , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Linfocitos T/inmunología , Microambiente Tumoral/inmunología
13.
Cancer Res ; 76(2): 239-50, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26567141

RESUMEN

The PD-1:PD-L1 immune signaling axis mediates suppression of T-cell-dependent tumor immunity. PD-1 expression was recently found to be upregulated on tumor-infiltrating murine (CD11c(+)CD11b(+)CD8(-)CD209a(+)) and human (CD1c(+)CD19(-)) myeloid dendritic cells (TIDC), an innate immune cell type also implicated in immune escape. However, there is little knowledge concerning how PD-1 regulates innate immune cells. In this study, we examined the role of PD-1 in TIDCs derived from mice bearing ovarian tumors. Similar to lymphocytes, TIDC expression of PD-1 was associated with expression of the adapter protein SHP-2, which signals to NF-κB; however, in contrast to its role in lymphocytes, we found that expression of PD-1 in TIDC tonically paralyzed NF-κB activation. Further mechanistic investigations showed that PD-1 blocked NF-κB-dependent cytokine release in a SHP-2-dependent manner. Conversely, inhibition of NF-κB-mediated antigen presentation by PD-1 occurred independently of SHP-2. Collectively, our findings revealed that PD-1 acts in a distinct manner in innate immune cells compared with adaptive immune cells, prompting further investigations of the signaling pathways controlled by this central mediator of immune escape in cancer.


Asunto(s)
Células Dendríticas/inmunología , FN-kappa B/metabolismo , Neoplasias Ováricas/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Ováricas/patología , Transducción de Señal
14.
Am J Physiol Gastrointest Liver Physiol ; 309(11): G900-9, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26472224

RESUMEN

Krüppel-like factor (KLF)-10 is an important transcriptional regulator of TGF-ß1 signaling in both CD8(+) and CD4(+) T lymphocytes. In the present study, we demonstrate a novel role for KLF10 in the regulation of TGFßRII expression with functional relevance in macrophage differentiation and activation. We first show that transfer of KLF10(-/-) bone marrow-derived macrophages into wild-type (WT) mice leads to exacerbation of experimental colitis. At the cell biological level, using two phenotypic strategies, we show that KLF10-deficient mice have an altered colonic macrophage phenotype with higher frequency of proinflammatory LyC6(+)MHCII(+) cells and a reciprocal decrease of the anti-inflammatory LyC6(-)MHCII(+) subset. Additionally, the anti-inflammatory CD11b(+)CX3CR1(hi) subset of colonic macrophages is significantly decreased in KLF10(-/-) compared with WT mice under inflammatory conditions. Molecularly, CD11b(+) colonic macrophages from KLF10(-/-) mice exhibit a proinflammatory cytokine profile with increased production of TNF-α and lower production of IL-10 in response to LPS stimulation. Because KLF10 is a transcription factor, we explored how this protein may regulate macrophage function. Consequently, we analyzed the expression of TGFßRII expression in colonic macrophages and found that, in the absence of KLF10, macrophages express lower levels of TGFßRII and display an attenuated Smad-2 phosphorylation following TGF-ß1 stimulation. We further show that KLF10 directly binds to the TGFßRII promoter in macrophages, leading to enhanced gene expression through histone H3 acetylation. Collectively, our data reveal a critical role for KLF10 in the epigenetic regulation of TGFßRII expression in macrophages and the acquisition of a "regulatory" phenotype that contributes to intestinal mucosal homeostasis.


Asunto(s)
Colitis/metabolismo , Colon/metabolismo , Factores de Transcripción de la Respuesta de Crecimiento Precoz/deficiencia , Mucosa Intestinal/metabolismo , Factores de Transcripción de Tipo Kruppel/deficiencia , Macrófagos/metabolismo , Acetilación , Animales , Secuencia de Bases , Sitios de Unión , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocinas CX3C , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Colon/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Factores de Transcripción de la Respuesta de Crecimiento Precoz/genética , Predisposición Genética a la Enfermedad , Antígenos de Histocompatibilidad Clase II/metabolismo , Histonas/metabolismo , Mediadores de Inflamación/metabolismo , Interleucina-10/metabolismo , Mucosa Intestinal/patología , Factores de Transcripción de Tipo Kruppel/genética , Macrófagos/trasplante , Ratones Noqueados , Datos de Secuencia Molecular , Fenotipo , Fosforilación , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Quimiocina/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
15.
Am J Physiol Cell Physiol ; 308(5): C362-71, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25472963

RESUMEN

KLF10 has recently elicited significant attention as a transcriptional regulator of transforming growth factor-ß1 (TGF-ß1) signaling in CD4(+) T cells. In the current study, we demonstrate a novel role for KLF10 in the regulation of TGF-ß receptor II (TGF-ßRII) expression with functional relevance in antiviral immune response. Specifically, we show that KLF10-deficient mice have an increased number of effector/memory CD8(+) T cells, display higher levels of the T helper type 1 cell-associated transcription factor T-bet, and produce more IFN-γ following in vitro stimulation. In addition, KLF10(-/-) CD8(+) T cells show enhanced proliferation in vitro and homeostatic proliferation in vivo. Freshly isolated CD8(+) T cells from the spleen of adult mice express lower levels of surface TGF-ßRII (TßRII). Congruently, in vitro activation of KLF10-deficient CD8(+) T cells upregulate TGF-ßRII to a lesser extent compared with wild-type (WT) CD8(+) T cells, which results in attenuated Smad2 phosphorylation following TGF-ß1 stimulation compared with WT CD8(+) T cells. Moreover, we demonstrate that KLF10 directly binds to the TGF-ßRII promoter in T cells, leading to enhanced gene expression. In vivo viral infection with Daniel's strain Theiler's murine encephalomyelitis virus (TMEV) also led to lower expression of TGF-ßRII among viral-specific KLF10(-/-) CD8(+) T cells and a higher percentage of IFN-γ-producing CD8(+) T cells in the spleen. Collectively, our data reveal a critical role for KLF10 in the transcriptional activation of TGF-ßRII in CD8(+) T cells. Thus, KLF10 regulation of TGF-ßRII in this cell subset may likely play a critical role in viral and tumor immune responses for which the integrity of the TGF-ß1/TGF-ßRII signaling pathway is crucial.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Factores de Transcripción de la Respuesta de Crecimiento Precoz/fisiología , Factores de Transcripción de Tipo Kruppel/fisiología , Proteínas Serina-Treonina Quinasas/biosíntesis , Receptores de Factores de Crecimiento Transformadores beta/biosíntesis , Factor de Crecimiento Transformador beta/biosíntesis , Animales , Células Cultivadas , Factores de Transcripción de la Respuesta de Crecimiento Precoz/deficiencia , Regulación de la Expresión Génica , Humanos , Células Jurkat , Factores de Transcripción de Tipo Kruppel/deficiencia , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptor Tipo II de Factor de Crecimiento Transformador beta
16.
Cancer Res ; 74(11): 2974-85, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24728077

RESUMEN

Immunosuppression in the tumor microenvironment blunts vaccine-induced immune effectors. PD-1/B7-H1 is an important inhibitory axis in the tumor microenvironment. Our goal in this study was to determine the effect of blocking this inhibitory axis during and following vaccination against breast cancer. We observed that using anti-PD-1 antibody and a multipeptide vaccine (consisting of immunogenic peptides derived from breast cancer antigens, neu, legumain, and ß-catenin) as a combination therapy regimen for the treatment of breast cancer-bearing mice prolonged the vaccine-induced progression-free survival period. This prolonged survival was associated with increase in number of Tc1 and Tc2 CD8 T cells with memory precursor phenotype, CD27+IL-7RhiT-betlo, and decrease in number of PD-1+ dendritic cells (DC) in regressing tumors and enhanced antigen reactivity of tumor-infiltrating CD8 T cells. It was also observed that blockade of PD-1 on tumor DCs enhanced IL-7R expression on CD8 T cells. Taken together, our results suggest that PD-1 blockade enhances breast cancer vaccine efficacy by altering both CD8 T cell and DC components of the tumor microenvironment. Given the recent success of anti-PD-1 monotherapy, our results are encouraging for developing combination therapies for the treatment of patients with cancer in which anti-PD-1 monotherapy alone may be ineffective (i.e., PD-L1-negative tumors).


Asunto(s)
Anticuerpos/inmunología , Anticuerpos/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/farmacología , Memoria Inmunológica/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Animales , Antígenos de Neoplasias/inmunología , Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Supervivencia sin Enfermedad , Femenino , Memoria Inmunológica/efectos de los fármacos , Mastocitoma/inmunología , Mastocitoma/terapia , Ratones , Ratones Endogámicos BALB C , Receptores de Interleucina-7/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
17.
Mol Cancer Ther ; 12(12): 2909-16, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24130056

RESUMEN

Ovarian cancer mortality ranks highest among all gynecologic cancers with growth factor pathways playing an integral role in tumorigenesis, metastatic dissemination, and therapeutic resistance. The HER and VEGF receptor (VEGFR) are both overexpressed and/or aberrantly activated in subsets of ovarian tumors. While agents targeting either the HER or VEGF pathways alone have been investigated, the impact of these agents have not led to overall survival benefit in ovarian cancer. We tested the hypothesis that cotargeting HER and VEGFR would maximize antitumor efficacy at tolerable doses. To this end, ovarian cancer xenografts grown intraperitoneally in athymic nude mice were tested in response to AC480 (pan-HER inhibitor, "HERi"), cediranib (pan-VEGFR inhibitor "VEGFRi"), or BMS-690514 (combined HER/VEGFR inhibitor "EVRi"). EVRi was superior to both HERi and VEGFRi in terms of tumor growth, final tumor weight, and progression-free survival. Correlative tumor studies employing phosphoproteomic antibody arrays revealed distinct agent-specific alterations, with EVRi inducing the greatest overall effect on growth factor signaling. These data suggest that simultaneous inhibition of HER and VEGFR may benefit select subsets of ovarian cancer tumors. To this end, we derived a novel HER/VEGF signature that correlated with poor overall survival in high-grade, late stage, serous ovarian cancer patient tumors.


Asunto(s)
Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Quinazolinas/farmacología , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Línea Celular Tumoral , Análisis por Conglomerados , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Ratones , Clasificación del Tumor , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/mortalidad , Piperidinas/administración & dosificación , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Proteómica , Pirroles/administración & dosificación , Pirroles/farmacología , Quinazolinas/administración & dosificación , Transducción de Señal , Triazinas/administración & dosificación , Triazinas/farmacología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Immunol ; 186(12): 6905-13, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21551365

RESUMEN

Within the ovarian cancer microenvironment, there are several mechanisms that suppress the actions of antitumor immune effectors. Delineating the complex immune microenvironment is an important goal toward developing effective immune-based therapies. A dominant pathway of immune suppression in ovarian cancer involves tumor-associated and dendritic cell (DC)-associated B7-H1. The interaction of B7-H1 with PD-1 on tumor-infiltrating T cells is a widely cited theory of immune suppression involving B7-H1 in ovarian cancer. Recent studies suggest that the B7-H1 ligand, programmed death receptor-1 (PD-1), is also expressed on myeloid cells, complicating interpretations of how B7-H1 regulates DC function in the tumor. In this study, we found that ovarian cancer-infiltrating DCs progressively expressed increased levels of PD-1 over time in addition to B7-H1. These dual-positive PD-1(+) B7-H1(+) DCs have a classical DC phenotype (i.e., CD11c(+)CD11b(+)CD8(-)), but are immature, suppressive, and respond poorly to danger signals. Accumulation of PD-1(+)B7-H1(+) DCs in the tumor was associated with suppression of T cell activity and decreased infiltrating T cells in advancing tumors. T cell suppressor function of these DCs appeared to be mediated by T cell-associated PD-1. In contrast, ligation of PD-1 expressed on the tumor-associated DCs suppressed NF-κB activation, release of immune regulatory cytokines, and upregulation of costimulatory molecules. PD-1 blockade in mice bearing ovarian cancer substantially reduced tumor burden and increased effector Ag-specific T cell responses. Our results reveal a novel role of tumor infiltrating PD-1(+)B7-H1(+) DCs in mediating immune suppression in ovarian cancer.


Asunto(s)
Antígenos CD/inmunología , Proteínas Reguladoras de la Apoptosis/inmunología , Células Dendríticas/inmunología , Neoplasias Ováricas/inmunología , Animales , Antígeno B7-H1 , Células Cultivadas , Células Dendríticas/química , Femenino , Inmunofenotipificación , Terapia de Inmunosupresión , Linfocitos Infiltrantes de Tumor , Ratones , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1 , Carga Tumoral/inmunología
19.
Hum Gene Ther ; 19(7): 690-8, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18576918

RESUMEN

Gliomas have a dismal prognosis, with the median survival of patients with the most common histology, glioblastoma multiforme, being only 12-15 months. Development of novel therapeutic agents is urgently needed. We have previously demonstrated that oncolytic measles virus strains derived from the Edmonston vaccine lineage have significant antitumor activity against gliomas [Phuong, L.K., Allen, C., Peng, K.W., Giannini, C., Greiner, S., Teneyck, C.J., Mishra, P.K., Macura, S.I., Russell, S.J., Galanis, E.C. (2003). Cancer. Res. 63, 2462-2469]. MV-CEA is an Edmonston vaccine lineage measles virus strain engineered to express the marker peptide carcinoembryonic antigen (CEA): CEA levels can serve as a correlate of viral gene expression. In support of a phase I clinical trial of intratumoral and resection cavity administration of MV-CEA to patients with recurrent gliomas, we assessed the neurotoxicity of MV-CEA in adult immune male rhesus macaques (Macaca mulatta). The animals ' immune status and administration schedule mimicked the trial population and proposed administration schema. Macaca mulatta represents the prototype animal species for assessment of measles neurotoxicity. The animals were stereotactically administered either vehicle (n = 1) or MV-CEA at 2 x 10(5)or 2 x 10(6) TCID(50) (each, n = 2) in the right frontal lobe in two injections on days 1 and 5. Macaques were closely monitored clinically for neurotoxicity. Body weight, temperature, complete blood count, CEA, clinical chemistries, coagulation, complement levels, immunoglobulin, measles antibody titers, viremia, and shedding (buccal swabs) were tested at multiple time points. Furthermore, cisterna magna spinal taps were performed on day 9 and 1 year after the first viral dose administration, and samples were analyzed for protein, glucose, cell differential, and presence of MV-CEA. Magnetic resonance imaging (MRI) was performed between 4 and 5 months after article administration to assess for subclinical neurotoxicity. To date, 36+ months from study initiation there has been no clinical or biochemical evidence of toxicity, including lack of neurological symptoms, fever, or other systemic symptoms and lack of immunosuppression. Quantitative RT-PCR analysis of blood, buccal swabs, and cerebrospinal fluid (CSF) was negative for MV-CEA at all time points, with the exception of viral genome deletion in the blood of one asymptomatic animal at the 2 x 10(6) TCID(50) dose level on day 85. Vero cell overlays of CSF cells and supernatant were negative for viral recovery. There was no detection of CEA in serum or CSF at any time point. MRI scans were negative for imaging abnormalities and showed no evidence of encephalitis. Our results support the safety of CNS administration of MV-CEA in glioma patients. A clinical trial of intratumoral and resection cavity administration of MV-CEA in patients with recurrent glioblastoma multiforme is currently ongoing.


Asunto(s)
Neoplasias Encefálicas/terapia , Vacunas contra el Cáncer , Antígeno Carcinoembrionario/metabolismo , Vectores Genéticos , Glioma/terapia , Virus del Sarampión , Animales , Encéfalo/virología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/prevención & control , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/efectos adversos , Vacunas contra el Cáncer/genética , Antígeno Carcinoembrionario/genética , Chlorocebus aethiops , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Efecto Citopatogénico Viral , Vías de Administración de Medicamentos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/efectos adversos , Glioma/genética , Glioma/patología , Glioma/prevención & control , Humanos , Macaca mulatta , Masculino , Virus del Sarampión/genética , Virus del Sarampión/patogenicidad , Recurrencia , Resultado del Tratamiento , Células Vero
20.
Blood ; 111(3): 1472-9, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18029553

RESUMEN

Studies have shown that the immune system can recognize self-antigens under conditions (eg, cell injury) in which the self-tissue might elaborate immune-activating endogenous danger signals. Uric acid (UA) is an endogenous danger signal recently identified to be released from dying cells. Prior work has shown that UA activates immune effectors of both the innate and adaptive immune system, including neutrophils and cytotoxic T-cell immunity. However, it was unclear whether UA could enhance antibody immunity, which was examined in this study. When added to dying tumor cells or with whole protein antigen, UA increased IgG1-based humoral immunity. Further, UA blocked growth of tumor in subsequent tumor challenge experiments, which depended on CD4, but not CD8, T cells. Sera derived from UA-treated animals enhanced tumor growth, suggesting it had little role in the antitumor response. UA did not signal for T-cell expansion or altered tumor-infiltrating leukocyte populations. Consistent with the lack of T-cell expansion, when applied to dendritic cells, UA suppressed T-cell growth factors but up-regulated B cell-activating cytokines. Understanding the nature of endogenous danger signals released from dying cells may aid in a better understanding of mechanisms of immune recognition of self.


Asunto(s)
Anticuerpos/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Ácido Úrico/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Línea Celular Tumoral , Cristalización , Interleucina-5/farmacología , Leucocitos/citología , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Ratones , Neoplasias/inmunología , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...