Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202415333, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384545

RESUMEN

Abdominal pain presents an onerous reality for millions of people affected by gastrointestinal disorders such as irritable bowel syndrome (IBS) and inflammatory bowel diseases (IBD). The oxytocin receptor (OTR) has emerged as a new analgesic drug target with OTR expression upregulated on colon-innervating nociceptors in chronic visceral hypersensitivity states, accessible via luminal delivery. However, the low gastrointestinal stability of OTR's endogenous peptide ligand oxytocin (OT) is a bottleneck for therapeutic development. Here, we report the development of potent and fully gut-stable OT analogues, laying the foundation for a new area of oral gut-specific peptide therapeutics. Ligand optimisation guided by structure-gut-stability-activity relationships yielded highly stable analogues (t1/2 >24 h, compared to t1/2 <10 min of OT in intestinal fluid) equipotent to OT (~3 nM) and with enhanced OTR selectivity. Intra-colonic administration of the lead ligand significantly reduced colonic mechanical hypersensitivity in a concentration-dependent manner in a mouse model of chronic abdominal pain. Moreover, oral administration of the lead ligand also displayed significant analgesia in this abdominal pain mouse model. The generated ligands and employed strategies could pave the way to a new class of oral gut-specific peptides to study and combat chronic gastrointestinal disorders, an area with substantial unmet medical needs.

2.
J Med Chem ; 65(8): 6191-6206, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35420805

RESUMEN

Inherent susceptibility of peptides to enzymatic degradation in the gastrointestinal tract is a key bottleneck in oral peptide drug development. Here, we present a systematic analysis of (i) the gut stability of disulfide-rich peptide scaffolds, orally administered peptide therapeutics, and well-known neuropeptides and (ii) medicinal chemistry strategies to improve peptide gut stability. Among a broad range of studied peptides, cyclotides were the only scaffold class to resist gastrointestinal degradation, even when grafted with non-native sequences. Backbone cyclization, a frequently applied strategy, failed to improve stability in intestinal fluid, but several site-specific alterations proved efficient. This work furthermore highlights the importance of standardized gut stability test conditions and suggests defined protocols to facilitate cross-study comparison. Together, our results provide a comparative overview and framework for the chemical engineering of gut-stable peptides, which should be valuable for the development of orally administered peptide therapeutics and molecular probes targeting receptors within the gastrointestinal tract.


Asunto(s)
Ciclotidas , Secuencia de Aminoácidos , Ciclización , Ciclotidas/química
3.
Methods Mol Biol ; 2384: 175-199, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34550575

RESUMEN

Solid phase peptide synthesis is the most commonly used method for the production of peptides. In this chapter, we outline the standard operating procedures used in our laboratory to efficiently access oxytocin-like peptides. This includes detailed descriptions of equipment setup, reagent selection, peptide assembly on solid support, peptide side chain deprotection and cleavage from the solid support, oxidative folding, purification, and analysis.


Asunto(s)
Técnicas de Síntesis en Fase Sólida , Fluorenos , Indicadores y Reactivos , Oxitocina
4.
Chem Sci ; 12(11): 4057-4062, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-34163676

RESUMEN

Vasopressin (VP) and oxytocin (OT) are cyclic neuropeptides that regulate fundamental physiological functions via four G protein-coupled receptors, V1aR, V1bR, V2R, and OTR. Ligand development remains challenging for these receptors due to complex structure-activity relationships. Here, we investigated dimerization as a strategy for developing ligands with novel pharmacology. We regioselectively synthesised and systematically studied parallel, antiparallel and N- to C-terminal cyclized homo- and heterodimer constructs of VP, OT and dVDAVP (1-deamino-4-valine-8-d-arginine-VP). All disulfide-linked dimers, except for the head-to-tail cyclized constructs, retained nanomolar potency despite the structural implications of dimerization. Our results support a single chain interaction for receptor activation. Dimer orientation had little impact on activity, except for the dVDAVP homodimers, where an antagonist to agonist switch was observed at the V1aR. This study provides novel insights into the structural requirements of VP/OT receptor activation and spotlights dimerization as a strategy to modulate pharmacology, a concept also frequently observed in nature.

5.
IUCrdata ; 5(Pt 2): x200224, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36340835

RESUMEN

The tricyclic core in the title compound, C26H34O4Si2, shows disorder of the furan ring and deviates slightly from planarity, with the largest displacement from the least-squares plane [0.166 (2) Å] for the major disordered part of the methine C atom. To this C atom the likewise disordered vinyl group is attached, lying nearly perpendicular to the tricyclic core. In the crystal, mutual C-H⋯π inter-actions between the methine group of the furan ring and the central ring of the tricyclic core of an adjacent mol-ecule lead to inversion-related dimers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...