Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Heart Assoc ; 13(13): e033155, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38934864

RESUMEN

BACKGROUND: Current protocols generate highly pure human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro that recapitulate characteristics of mature in vivo cardiomyocytes. Yet, a risk of arrhythmias exists when hiPSC-CMs are injected into large animal models. Thus, understanding hiPSC-CM maturational mechanisms is crucial for clinical translation. Forkhead box (FOX) transcription factors regulate postnatal cardiomyocyte maturation through a balance between FOXO and FOXM1. We also previously demonstrated that p53 activation enhances hiPSC-CM maturation. Here, we investigate whether p53 activation modulates the FOXO/FOXM1 balance to promote hiPSC-CM maturation in 3-dimensional suspension culture. METHODS AND RESULTS: Three-dimensional cultures of hiPSC-CMs were treated with Nutlin-3a (p53 activator, 10 µM), LOM612 (FOXO relocator, 5 µM), AS1842856 (FOXO inhibitor, 1 µM), or RCM-1 (FOXM1 inhibitor, 1 µM), starting 2 days after onset of beating, with dimethyl sulfoxide (0.2% vehicle) as control. P53 activation promoted hiPSC-CM metabolic and electrophysiological maturation alongside FOXO upregulation and FOXM1 downregulation, in n=3 to 6 per group for all assays. FOXO inhibition significantly decreased expression of cardiac-specific markers such as TNNT2. In contrast, FOXO activation or FOXM1 inhibition promoted maturational characteristics such as increased contractility, oxygen consumption, and voltage peak maximum upstroke velocity, in n=3 to 6 per group for all assays. Further, by single-cell RNA sequencing of n=2 LOM612-treated cells compared with dimethyl sulfoxide, LOM612-mediated FOXO activation promoted expression of cardiac maturational pathways. CONCLUSIONS: We show that p53 activation promotes FOXO and suppresses FOXM1 during 3-dimensional hiPSC-CM maturation. These results expand our understanding of hiPSC-CM maturational mechanisms in a clinically-relevant 3-dimensional culture system.


Asunto(s)
Diferenciación Celular , Proteína Forkhead Box M1 , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Proteína p53 Supresora de Tumor , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Técnicas de Cultivo Tridimensional de Células/métodos , Células Cultivadas , Transducción de Señal , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética
2.
medRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961166

RESUMEN

Patients with mitochondrial disorders present with clinically diverse symptoms, largely driven by heterogeneous mutations in mitochondrial-encoded and nuclear-encoded mitochondrial genes. These mutations ultimately lead to complex biochemical disorders with a myriad of clinical manifestations, often accumulating during childhood on into adulthood, contributing to life-altering and sometimes fatal events. It is therefore important to diagnose and characterize the associated disorders for each mitochondrial mutation as early as possible since medical management might be able to improve the quality and longevity of life in mitochondrial disease patients. Here we identify a novel mitochondrial variant in a mitochondrial transfer RNA for histidine (mt-tRNA-his) [m.12148T>C], that is associated with the development of ocular, aural, neurological, renal, and muscular dysfunctions. We provide a detailed account of a family harboring this mutation, as well as the molecular underpinnings contributing to cellular and mitochondrial dysfunction. In conclusion, this investigation provides clinical, biochemical, and morphological evidence of the pathogenicity of m.12148T>C. We highlight the importance of multiple tissue testing and in vitro disease modeling in diagnosing mitochondrial disease.

3.
Nucleic Acids Res ; 51(20): 10829-10845, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37843128

RESUMEN

DNA damage causes genomic instability underlying many diseases, with traditional analytical approaches providing minimal insight into the spectrum of DNA lesions in vivo. Here we used untargeted chromatography-coupled tandem mass spectrometry-based adductomics (LC-MS/MS) to begin to define the landscape of DNA modifications in rat and human tissues. A basis set of 114 putative DNA adducts was identified in heart, liver, brain, and kidney in 1-26-month-old rats and 111 in human heart and brain by 'stepped MRM' LC-MS/MS. Subsequent targeted analysis of these species revealed species-, tissue-, age- and sex-biases. Structural characterization of 10 selected adductomic signals as known DNA modifications validated the method and established confidence in the DNA origins of the signals. Along with strong tissue biases, we observed significant age-dependence for 36 adducts, including N2-CMdG, 5-HMdC and 8-Oxo-dG in rats and 1,N6-ϵdA in human heart, as well as sex biases for 67 adducts in rat tissues. These results demonstrate the potential of adductomics for discovering the true spectrum of disease-driving DNA adducts. Our dataset of 114 putative adducts serves as a resource for characterizing dozens of new forms of DNA damage, defining mechanisms of their formation and repair, and developing them as biomarkers of aging and disease.


Asunto(s)
Aductos de ADN , ADN , Animales , Femenino , Humanos , Masculino , Ratas , Cromatografía Liquida/métodos , ADN/química , Aductos de ADN/genética , Roedores , Espectrometría de Masas en Tándem/métodos
5.
Nat Commun ; 14(1): 2803, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193692

RESUMEN

Parkinson's disease (PD) is a complex neurodegenerative disease with etiology rooted in genetic vulnerability and environmental factors. Here we combine quantitative epidemiologic study of pesticide exposures and PD with toxicity screening in dopaminergic neurons derived from PD patient induced pluripotent stem cells (iPSCs) to identify Parkinson's-relevant pesticides. Agricultural records enable investigation of 288 specific pesticides and PD risk in a comprehensive, pesticide-wide association study. We associate long-term exposure to 53 pesticides with PD and identify co-exposure profiles. We then employ a live-cell imaging screening paradigm exposing dopaminergic neurons to 39 PD-associated pesticides. We find that 10 pesticides are directly toxic to these neurons. Further, we analyze pesticides typically used in combinations in cotton farming, demonstrating that co-exposures result in greater toxicity than any single pesticide. We find trifluralin is a driver of toxicity to dopaminergic neurons and leads to mitochondrial dysfunction. Our paradigm may prove useful to mechanistically dissect pesticide exposures implicated in PD risk and guide agricultural policy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Plaguicidas , Humanos , Plaguicidas/toxicidad , Enfermedad de Parkinson/genética , Neuronas Dopaminérgicas
6.
Prog Retin Eye Res ; 96: 101153, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36503723

RESUMEN

Optogenetics is defined as the combination of genetic and optical methods to induce or inhibit well-defined events in isolated cells, tissues, or animals. While optogenetics within ophthalmology has been primarily applied towards treating inherited retinal disease, there are a myriad of other applications that hold great promise for a variety of eye diseases including cellular regeneration, modulation of mitochondria and metabolism, regulation of intraocular pressure, and pain control. Supported by primary data from the authors' work with in vitro and in vivo applications, we introduce a novel approach to metabolic regulation, Opsins to Restore Cellular ATP (ORCA). We review the fundamental constructs for ophthalmic optogenetics, present current therapeutic approaches and clinical trials, and discuss the future of subcellular and signaling pathway applications for neuroprotection and vision restoration.


Asunto(s)
Neuroprotección , Degeneración Retiniana , Animales , Optogenética , Retina/metabolismo , Visión Ocular , Degeneración Retiniana/metabolismo
7.
Front Genet ; 13: 888025, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571054

RESUMEN

There is considerable variability in the susceptibility and progression for COVID-19 and it appears to be strongly correlated with age, gender, ethnicity and pre-existing health conditions. However, to our knowledge, cohort studies of COVID-19 in clinically vulnerable groups are lacking. Host genetics has also emerged as a major risk factor for COVID-19, and variation in the ACE2 receptor, which facilitates entry of the SARS-CoV-2 virus into the cell, has become a major focus of attention. Thus, we interrogated an ethnically diverse cohort of National Health Service (NHS) patients in the United Kingdom (United Kingdom) to assess the association between variants in the ACE2 locus and COVID-19 risk. We analysed whole-genome sequencing (WGS) data of 1,837 cases who were tested positive for SARS-CoV-2, and 37,207 controls who were not tested, from the UK's 100,000 Genomes Project (100KGP) for the presence of ACE2 coding variants and extract expression quantitative trait loci (eQTLs). We identified a splice site variant (rs2285666) associated with increased ACE2 expression with an overrepresentation in SARS-CoV-2 positive patients relative to 100KGP controls (p = 0.015), and in hospitalised European patients relative to outpatients in intra-ethnic comparisons (p = 0.029). We also compared the prevalence of 288 eQTLs, of which 23 were enriched in SARS-CoV-2 positive patients. The eQTL rs12006793 had the largest effect size (d = 0.91), which decreases ACE2 expression and is more prevalent in controls, thus potentially reducing the risk of COVID-19. We identified three novel nonsynonymous variants predicted to alter ACE2 function, and showed that three variants (p.K26R, p. H378R, p. Y515N) alter receptor affinity for the viral Spike (S) protein. Variant p. N720D, more prevalent in the European population (p < 0.001), potentially increases viral entry by affecting the ACE2-TMPRSS2 complex. The spectrum of genetic variants in ACE2 may inform risk stratification of COVID-19 patients and could partially explain the differences in disease susceptibility and severity among different ethnic groups.

8.
Transl Vis Sci Technol ; 10(8): 4, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34232272

RESUMEN

Translational Relevance: Mitochondria are viable therapeutic targets for a broad spectrum of ocular diseases.


Asunto(s)
Oftalmopatías , Mitocondrias , Oftalmopatías/tratamiento farmacológico , Humanos
9.
eNeuro ; 8(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33441400

RESUMEN

The failure of adult CNS neurons to survive and regenerate their axons after injury or in neurodegenerative disease remains a major target for basic and clinical neuroscience. Recent data demonstrated in the adult mouse that exogenous expression of Sry-related high-mobility-box 11 (Sox11) promotes optic nerve regeneration after optic nerve injury but exacerbates the death of a subset of retinal ganglion cells (RGCs), α-RGCs. During development, Sox11 is required for RGC differentiation from retinal progenitor cells (RPCs), and we found that mutation of a single residue to prevent SUMOylation at lysine 91 (K91) increased Sox11 nuclear localization and RGC differentiation in vitro Here, we explored whether this Sox11 manipulation similarly has stronger effects on RGC survival and optic nerve regeneration. In vitro, we found that non-SUMOylatable Sox11K91A leads to RGC death and suppresses axon outgrowth in primary neurons. We furthermore found that Sox11K91A more strongly promotes axon regeneration but also increases RGC death after optic nerve injury in vivo in the adult mouse. RNA sequence (RNA-seq) data showed that Sox11 and Sox11K91A increase the expression of key signaling pathway genes associated with axon growth and regeneration but downregulated Spp1 and Opn4 expression in RGC cultures, consistent with negatively regulating the survival of α-RGCs and ipRGCs. Thus, Sox11 and its SUMOylation site at K91 regulate gene expression, survival and axon growth in RGCs, and may be explored further as potential regenerative therapies for optic neuropathy.


Asunto(s)
Enfermedades Neurodegenerativas , Traumatismos del Nervio Óptico , Animales , Axones/metabolismo , Supervivencia Celular , Ratones , Regeneración Nerviosa , Enfermedades Neurodegenerativas/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo
10.
Cell Rep ; 32(3): 107925, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32697997

RESUMEN

Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have enormous potential for the study of human cardiac disorders. However, their physiological immaturity severely limits their utility as a model system and their adoption for drug discovery. Here, we describe maturation media designed to provide oxidative substrates adapted to the metabolic needs of human iPSC (hiPSC)-CMs. Compared with conventionally cultured hiPSC-CMs, metabolically matured hiPSC-CMs contract with greater force and show an increased reliance on cardiac sodium (Na+) channels and sarcoplasmic reticulum calcium (Ca2+) cycling. The media enhance the function, long-term survival, and sarcomere structures in engineered heart tissues. Use of the maturation media made it possible to reliably model two genetic cardiac diseases: long QT syndrome type 3 due to a mutation in the cardiac Na+ channel SCN5A and dilated cardiomyopathy due to a mutation in the RNA splicing factor RBM20. The maturation media should increase the fidelity of hiPSC-CMs as disease models.


Asunto(s)
Medios de Cultivo/farmacología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Calcio/metabolismo , Trastorno del Sistema de Conducción Cardíaco/genética , Trastorno del Sistema de Conducción Cardíaco/fisiopatología , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Regulación de la Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Corazón/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Potenciales de la Membrana/efectos de los fármacos , Modelos Biológicos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Fenotipo , Ingeniería de Tejidos
11.
J Neurosci ; 40(20): 3896-3914, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32300046

RESUMEN

Optic neuropathies are a group of optic nerve (ON) diseases caused by various insults including glaucoma, inflammation, ischemia, trauma, and genetic deficits, which are characterized by retinal ganglion cell (RGC) death and ON degeneration. An increasing number of genes involved in RGC intrinsic signaling have been found to be promising neural repair targets that can potentially be modulated directly by gene therapy, if we can achieve RGC specific gene targeting. To address this challenge, we first used adeno-associated virus (AAV)-mediated gene transfer to perform a low-throughput in vivo screening in both male and female mouse eyes and identified the mouse γ-synuclein (mSncg) promoter, which specifically and potently sustained transgene expression in mouse RGCs and also works in human RGCs. We further demonstrated that gene therapy that combines AAV-mSncg promoter with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing can knock down pro-degenerative genes in RGCs and provide effective neuroprotection in optic neuropathies.SIGNIFICANCE STATEMENT Here, we present an RGC-specific promoter, mouse γ-synuclein (mSncg) promoter, and perform extensive characterization and proof-of-concept studies of mSncg promoter-mediated gene expression and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing in RGCs in vivo To our knowledge, this is the first report demonstrating in vivo neuroprotection of injured RGCs and optic nerve (ON) by AAV-mediated CRISPR/Cas9 inhibition of genes that are critical for neurodegeneration. It represents a powerful tool to achieve RGC-specific gene modulation, and also opens up a promising gene therapy strategy for optic neuropathies, the most common form of eye diseases that cause irreversible blindness.


Asunto(s)
Regulación de la Expresión Génica/genética , Edición de ARN/genética , Células Ganglionares de la Retina/metabolismo , gamma-Sinucleína/genética , Animales , Sistemas CRISPR-Cas , Dependovirus/genética , Femenino , Eliminación de Gen , Terapia Genética , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Ratones , Ratones Endogámicos C57BL , Nervio Óptico/patología , Enfermedades del Nervio Óptico/genética , Enfermedades del Nervio Óptico/terapia , Células Ganglionares de la Retina/patología , Transgenes/genética
12.
Sci Rep ; 9(1): 10669, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337818

RESUMEN

The process of mitochondrial fission-fusion has been implicated in diverse neuronal roles including neuronal survival, axon degeneration, and axon regeneration. However, whether increased fission or fusion is beneficial for neuronal health and/or axonal growth is not entirely clear, and is likely situational and cell type-dependent. In searching for mitochondrial fission-fusion regulating proteins for improving axonal growth within the visual system, we uncover that mitochondrial fission process 1,18 kDa (MTP18/MTFP1), a pro-fission protein within the CNS, is critical to maintaining mitochondrial size and volume under normal and injury conditions, in retinal ganglion cells (RGCs). We demonstrate that MTP18's expression is regulated by transcription factors involved in axonal growth, Kruppel-like factor (KLF) transcription factors-7 and -9, and that knockdown of MTP18 promotes axon growth. This investigation exposes MTP18's previously unexplored role in regulating mitochondrial fission, implicates MTP18 as a downstream component of axon regenerative signaling, and ultimately lays the groundwork for investigations on the therapeutic efficacy of MTP18 expression suppression during CNS axon degenerative events.


Asunto(s)
Axones/metabolismo , Proteínas de la Membrana/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Regeneración Nerviosa/fisiología , Neuronas/metabolismo , Animales , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Compresión Nerviosa , Proyección Neuronal/fisiología , Traumatismos del Nervio Óptico/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal
14.
Biomacromolecules ; 18(10): 3185-3196, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-28799757

RESUMEN

In the treatment of traumatic injuries, burns, and ulcers of the eye, inadequate epithelial tissue healing remains a major challenge. Wound healing is a complex process involving the temporal and spatial interplay between cells and their extracellular milieu. It can be impaired by a variety of causes including infection, poor circulation, loss of critical cells, and/or proteins, and a deficiency in normal neural signaling (e.g., neurotrophic ulcers). Ocular anatomy is particularly vulnerable to lasting morbidity from delayed healing, whether it be scarring or perforation of the cornea, destruction of the conjunctival mucous membrane, or cicatricial changes to the eyelids and surrounding skin. Therefore, there is a major clinical need for new modalities for controlling and accelerating wound healing, particularly in the eye. Collagen matrices have long been explored as scaffolds to support cell growth as both two-dimensional coatings and substrates, as well as three-dimensional matrices. Meanwhile, the immobilization of growth factors to various substrates has also been extensively studied as a way to promote enhanced cellular adhesion and proliferation. Herein we present a new strategy for photochemically immobilizing growth factors to collagen using riboflavin as a photosensitizer and exposure to visible light (∼458 nm). Epidermal growth factor (EGF) was successfully bound to collagen-coated surfaces as well as directly to endogenous collagen from porcine corneas. The initial concentration of riboflavin and EGF as well as the blue light exposure time were keys to the successful binding of growth factors to these surfaces. The photocrosslinking reaction increased EGF residence time on collagen surfaces over 7 days. EGF activity was maintained after the photocrosslinking reaction with a short duration of pulsed blue light exposure. Bound EGF accelerated in vitro corneal epithelial cell proliferation and migration and maintained normal cell phenotype. Additionally, the treated surfaces were cytocompatible, and the photocrosslinking reaction was proven to be safe, preserving nearly 100% cell viability. These results suggest that this general approach is safe and versatile may be used for targeting and immobilizing bioactive factors onto collagen matrices in a variety of applications, including in the presence of live, seeded cells or in vivo onto endogenous extracellular matrix collagen.


Asunto(s)
Colágeno/química , Factor de Crecimiento Epidérmico/química , Proteínas Inmovilizadas/química , Luz , Andamios del Tejido/química , Animales , Adhesión Celular , Supervivencia Celular , Células Cultivadas , Epitelio Corneal/citología , Epitelio Corneal/efectos de los fármacos , Fármacos Fotosensibilizantes/química , Conejos , Riboflavina/química , Porcinos , Andamios del Tejido/efectos adversos
15.
Invest Ophthalmol Vis Sci ; 56(12): 7214-23, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26540660

RESUMEN

PURPOSE: Cystinosis is caused by a deficiency in the lysosomal cystine transporter, cystinosin (CTNS gene), resulting in cystine crystal accumulation in tissues. In eyes, crystals accumulate in the cornea causing photophobia and eventually blindness. Hematopoietic stem progenitor cells (HSPCs) rescue the kidney in a mouse model of cystinosis. We investigated the potential for HSPC transplantation to treat corneal defects in cystinosis. METHODS: We isolated HSPCs from transgenic DsRed mice and systemically transplanted irradiated Ctns-/- mice. A year posttransplantation, we investigated the fate and function of HSPCs by in vivo confocal and fluorescence microscopy (IVCM), quantitative RT-PCR (RT-qPCR), mass spectrometry, histology, and by measuring the IOP. To determine the mechanism by which HSPCs may rescue disease cells, we transplanted Ctns-/- mice with Ctns-/- DsRed HSPCs virally transduced to express functional CTNS-eGFP fusion protein. RESULTS: We found that a single systemic transplantation of wild-type HSPCs prevented ocular pathology in the Ctns-/- mice. Engraftment-derived HSPCs were detected within the cornea, and also in the sclera, ciliary body, retina, choroid, and lens. Transplantation of HSPC led to substantial decreases in corneal cystine crystals, restoration of normal corneal thickness, and lowered IOP in mice with high levels of donor-derived cell engraftment. Finally, we found that HSPC-derived progeny differentiated into macrophages, which displayed tunneling nanotubes capable of transferring cystinosin-bearing lysosomes to diseased cells. CONCLUSIONS: To our knowledge, this is the first demonstration that HSPCs can rescue hereditary corneal defects, and supports a new potential therapeutic strategy for treating ocular pathologies.


Asunto(s)
Cistinosis/terapia , Oftalmopatías/terapia , Trasplante de Células Madre Hematopoyéticas/métodos , Animales , Células Cultivadas , Cistinosis/genética , Modelos Animales de Enfermedad , Oftalmopatías/congénito , Oftalmopatías/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
16.
Proc Natl Acad Sci U S A ; 112(33): 10515-20, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240337

RESUMEN

The lack of intravital imaging of axonal transport of mitochondria in the mammalian CNS precludes characterization of the dynamics of axonal transport of mitochondria in the diseased and aged mammalian CNS. Glaucoma, the most common neurodegenerative eye disease, is characterized by axon degeneration and the death of retinal ganglion cells (RGCs) and by an age-related increase in incidence. RGC death is hypothesized to result from disturbances in axonal transport and in mitochondrial function. Here we report minimally invasive intravital multiphoton imaging of anesthetized mouse RGCs through the sclera that provides sequential time-lapse images of mitochondria transported in a single axon with submicrometer resolution. Unlike findings from explants, we show that the axonal transport of mitochondria is highly dynamic in the mammalian CNS in vivo under physiological conditions. Furthermore, in the early stage of glaucoma modeled in adult (4-mo-old) mice, the number of transported mitochondria decreases before RGC death, although transport does not shorten. However, with increasing age up to 23-25 mo, mitochondrial transport (duration, distance, and duty cycle) shortens. In axons, mitochondria-free regions increase and lengths of transported mitochondria decrease with aging, although totally organized transport patterns are preserved in old (23- to 25-mo-old) mice. Moreover, axonal transport of mitochondria is more vulnerable to glaucomatous insults in old mice than in adult mice. These mitochondrial changes with aging may underlie the age-related increase in glaucoma incidence. Our method is useful for characterizing the dynamics of axonal transport of mitochondria and may be applied to other submicrometer structures in the diseased and aged mammalian CNS in vivo.


Asunto(s)
Envejecimiento , Transporte Axonal/fisiología , Sistema Nervioso Central/patología , Sistema Nervioso Central/fisiología , Mitocondrias/fisiología , Células Ganglionares de la Retina/fisiología , Animales , Axones/fisiología , Transporte Biológico , Modelos Animales de Enfermedad , Femenino , Glaucoma/patología , Glaucoma/fisiopatología , Imagenología Tridimensional , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nervio Óptico/patología , Fotones , Retina/citología , Esclerótica/fisiopatología , Factores de Tiempo
17.
Biochem Biophys Res Commun ; 402(4): 608-13, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-20971073

RESUMEN

Methionine sulfoxide reductase A (MsrA) is an enzyme that reverses oxidation of methionine in proteins. Using a MsrA gene knockout (MsrA(-/-)) mouse model, we have investigated the role of MsrA in the heart. Our data indicate that cellular contractility and cardiac function are not significantly changed in MsrA(-/-) mice if the hearts are not stressed. However, the cellular contractility, when stressed using a higher stimulation frequency (2Hz), is significantly reduced in MsrA(-/-) cardiac myocytes. MsrA(-/-) cardiac myocytes also show a significant decrease in contractility after oxidative stress using H(2)O(2). Corresponding changes in Ca(2+) transients are observed in MsrA(-/-) cardiomyocytes treated with 2Hz stimulation or with H(2)O(2). Electron microscope analyses reveal a dramatic morphological change of mitochondria in MsrA(-/-) mouse hearts. Further biochemical measurements indicate that protein oxidation levels in MsrA(-/-) mouse hearts are significantly higher than those in wild type controls. Our study demonstrates that the lack of MsrA in cardiac myocytes reduces myocardial cell's capability against stress stimulations resulting in a cellular dysfunction in the heart.


Asunto(s)
Metionina Sulfóxido Reductasas/deficiencia , Mitocondrias Cardíacas/fisiología , Contracción Miocárdica , Miocitos Cardíacos/fisiología , Estrés Oxidativo , Estrés Mecánico , Animales , Calcio/metabolismo , Metionina Sulfóxido Reductasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/ultraestructura , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...