Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 415(28): 7011-7024, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37843548

RESUMEN

The integration of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) with single cell spatial omics methods allows for a comprehensive investigation of single cell spatial information and matrisomal N-glycan and extracellular matrix protein imaging. Here, the performance of the antibody-directed single cell workflows coupled with MALDI-MSI are evaluated. Miralys™ photocleavable mass-tagged antibody probes (MALDI-IHC, AmberGen, Inc.), GeoMx DSP® (NanoString, Inc.), and Imaging Mass Cytometry (IMC, Standard BioTools Inc.) were used in series with MALDI-MSI of N-glycans and extracellular matrix peptides on formalin-fixed paraffin-embedded tissues. Single cell omics protocols were performed before and after MALDI-MSI. The data suggests that for each modality combination, there is an optimal order for performing both techniques on the same tissue section. An overall conclusion is that MALDI-MSI studies may be completed on the same tissue section as used for antibody-directed single cell modalities. This work increases access to combined cellular and extracellular information within the tissue microenvironment to enhance research on the pathological origins of disease.


Asunto(s)
Anticuerpos , Polisacáridos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Polisacáridos/análisis , Péptidos/análisis , Colágeno , Rayos Láser
2.
J Clin Invest ; 133(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37824211

RESUMEN

An immunosuppressive microenvironment causes poor tumor T cell infiltration and is associated with reduced patient overall survival in colorectal cancer. How to improve treatment responses in these tumors is still a challenge. Using an integrated screening approach to identify cancer-specific vulnerabilities, we identified complement receptor C5aR1 as a druggable target, which when inhibited improved radiotherapy, even in tumors displaying immunosuppressive features and poor CD8+ T cell infiltration. While C5aR1 is well-known for its role in the immune compartment, we found that C5aR1 is also robustly expressed on malignant epithelial cells, highlighting potential tumor cell-specific functions. C5aR1 targeting resulted in increased NF-κB-dependent apoptosis specifically in tumors and not normal tissues, indicating that, in malignant cells, C5aR1 primarily regulated cell fate. Collectively, these data revealed that increased complement gene expression is part of the stress response mounted by irradiated tumors and that targeting C5aR1 could improve radiotherapy, even in tumors displaying immunosuppressive features.


Asunto(s)
Complemento C5a , Receptores de Complemento , Humanos , Complemento C5a/genética , Receptores de Complemento/genética
3.
Acta Neuropathol Commun ; 11(1): 92, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308987

RESUMEN

Following traumatic brain injury (TBI), a neuroinflammatory response can persist for years and contribute to the development of chronic neurological manifestations. Complement plays a central role in post-TBI neuroinflammation, and C3 opsonins and the anaphylatoxins (C3a and C5a) have been implicated in promoting secondary injury. We used single cell mass cytometry to characterize the immune cell landscape of the brain at different time points after TBI. To specifically investigate how complement shapes the post-TBI immune cell landscape, we analyzed TBI brains in the context of CR2-Crry treatment, an inhibitor of C3 activation. We analyzed 13 immune cell types, including peripheral and brain resident cells, and assessed expression of various receptors. TBI modulated the expression of phagocytic and complement receptors on both brain resident and infiltrating peripheral immune cells, and distinct functional clusters were identified within same cell populations that emerge at different phases after TBI. In particular, a CD11c+ (CR4) microglia subpopulation continued to expand over 28 days after injury, and was the only receptor to show continuous increase over time. Complement inhibition affected the abundance of brain resident immune cells in the injured hemisphere and impacted the expression of functional receptors on infiltrating cells. A role for C5a has also been indicated in models of brain injury, and we found significant upregulation of C5aR1 on many immune cell types after TBI. However, we demonstrated experimentally that while C5aR1 is involved in the infiltration of peripheral immune cells into the brain after injury, it does not alone affect histological or behavioral outcomes. However, CR2-Crry improved post-TBI outcomes and reduced resident immune cell populations, as well as complement and phagocytic receptor expression, indicating that its neuroprotective effects are mediated upstream of C5a generation, likely via modulating C3 opsonization and complement receptor expression.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Humanos , Receptores de Complemento , Proteínas del Sistema Complemento , Encéfalo
4.
Blood Rev ; 58: 101012, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36114066

RESUMEN

Monocytes have been traditionally classified in three discrete subsets, which can participate in the immune responses as effector cells or as precursors of myeloid-derived cells in circulation and tissues. However, recent advances in single-cell omics have revealed unprecedented phenotypic and functional heterogeneity that goes well beyond the three conventional monocytic subsets and propose a more fluid differentiation model. This novel concept does not only apply to the monocytes in circulation but also at the tissue site. Consequently, the binary model proposed for differentiating monocyte into M1 and M2 macrophages has been recently challenged by a spectrum model that more realistically mirrors the heterogeneous cues in inflammatory conditions. This review describes the latest results on the high dimensional characterization of monocytes and monocyte-derived myeloid cells in steady state and cancer. We discuss how environmental cues and monocyte-intrinsic properties may affect their differentiation toward specific functional and phenotypic subsets, the causes of monocyte expansion and reduction in cancer, their metabolic requirements, and the potential effect on tumor immunity.


Asunto(s)
Monocitos , Neoplasias , Humanos , Monocitos/metabolismo , Macrófagos/metabolismo , Neoplasias/etiología , Diferenciación Celular
5.
J Immunother Cancer ; 10(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36137652

RESUMEN

BACKGROUND AND AIMS: The role of inflammatory immune responses in colorectal cancer (CRC) development and response to therapy is a matter of intense debate. While inflammation is a known driver of CRC, inflammatory immune infiltrates are a positive prognostic factor in CRC and predispose to response to immune checkpoint blockade (ICB) therapy. Unfortunately, over 85% of CRC cases are primarily unresponsive to ICB due to the absence of an immune infiltrate, and even the cases that show an initial immune infiltration can become refractory to ICB. The identification of therapy supportive immune responses in the field has been partially hindered by the sparsity of suitable mouse models to recapitulate the human disease. In this study, we aimed to understand how the dysregulation of the complement anaphylatoxin C3a receptor (C3aR), observed in subsets of patients with CRC, affects the immune responses, the development of CRC, and response to ICB therapy. METHODS: We use a comprehensive approach encompassing analysis of publicly available human CRC datasets, inflammation-driven and newly generated spontaneous mouse models of CRC, and multiplatform high-dimensional analysis of immune responses using microbiota sequencing, RNA sequencing, and mass cytometry. RESULTS: We found that patients' regulation of the complement C3aR is associated with epigenetic modifications. Specifically, downregulation of C3ar1 in human CRC promotes a tumor microenvironment characterized by the accumulation of innate and adaptive immune cells that support antitumor immunity. In addition, in vivo studies in our newly generated mouse model revealed that the lack of C3a in the colon activates a microbiota-mediated proinflammatory program which promotes the development of tumors with an immune signature that renders them responsive to the ICB therapy. CONCLUSIONS: Our findings reveal that C3aR may act as a previously unrecognized checkpoint to enhance antitumor immunity in CRC. C3aR can thus be exploited to overcome ICB resistance in a larger group of patients with CRC.


Asunto(s)
Neoplasias Colorrectales , Inhibidores de Puntos de Control Inmunológico , Anafilatoxinas , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Regulación hacia Abajo , Humanos , Factores Inmunológicos , Inmunoterapia/métodos , Inflamación/patología , Ratones , Microambiente Tumoral
6.
Sci Adv ; 8(29): eabj9138, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35857834

RESUMEN

SRY (sex determining region Y)-box 2 (SOX2)-labeled cells play key roles in chemoresistance and tumor relapse; thus, it is critical to elucidate the mechanisms propagating them. Single-cell transcriptomic analyses of the most common malignant pediatric brain tumor, medulloblastoma (MB), revealed the existence of astrocytic Sox2+ cells expressing sonic hedgehog (SHH) signaling biomarkers. Treatment with vismodegib, an SHH inhibitor that acts on Smoothened (Smo), led to increases in astrocyte-like Sox2+ cells. Using SOX2-enriched MB cultures, we observed that SOX2+ cells required SHH signaling to propagate, and unlike in the proliferative tumor bulk, the SHH pathway was activated in these cells downstream of Smo in an MYC-dependent manner. Functionally different GLI inhibitors depleted vismodegib-resistant SOX2+ cells from MB tissues, reduced their ability to further engraft in vivo, and increased symptom-free survival. Our results emphasize the promise of therapies targeting GLI to deplete SOX2+ cells and provide stable tumor remission.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Neoplasias Cerebelosas/genética , Niño , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Recurrencia Local de Neoplasia , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Proteína con Dedos de Zinc GLI1/metabolismo
7.
J Immunol ; 208(6): 1362-1370, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35228263

RESUMEN

The oncotherapeutic promise of IL-15, a potent immunostimulant, is limited by a short serum t 1/2 The fusion protein N-803 is a chimeric IL-15 superagonist that has a >20-fold longer in vivo t 1/2 versus IL-15. This phase 1 study characterized the pharmacokinetic (PK) profile and safety of N-803 after s.c. administration to healthy human volunteers. Volunteers received two doses of N-803, and after each dose, PK and safety were assessed for 9 d. The primary endpoint was the N-803 PK profile, the secondary endpoint was safety, and immune cell levels and immunogenicity were measures of interest. Serum N-803 concentrations peaked 4 h after administration and declined with a t 1/2 of ∼20 h. N-803 did not cause treatment-emergent serious adverse events (AEs) or grade ≥3 AEs. Injection site reactions, chills, and pyrexia were the most common AEs. Administration of N-803 was well tolerated and accompanied by proliferation of NK cells and CD8+ T cells and sustained increases in the number of NK cells. Our results suggest that N-803 administration can potentiate antitumor immunity.


Asunto(s)
Linfocitos T CD8-positivos , Interleucina-15 , Voluntarios Sanos , Humanos , Proteínas Recombinantes de Fusión
8.
Cell Rep Med ; 2(10): 100411, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34755131

RESUMEN

Neoadjuvant PD-1 blockade may be efficacious in some individuals with high-risk, resectable oral cavity head and neck cancer. To explore correlates of response patterns to neoadjuvant nivolumab treatment and post-surgical recurrences, we analyzed longitudinal tumor and blood samples in a cohort of 12 individuals displaying 33% responsiveness. Pretreatment tumor-based detection of FLT4 mutations and PTEN signature enrichment favors response, and high tumor mutational burden improves recurrence-free survival. In contrast, preexisting and/or acquired mutations (in CDKN2A, YAP1, or JAK2) correlate with innate resistance and/or tumor recurrence. Immunologically, tumor response after therapy entails T cell receptor repertoire diversification in peripheral blood and intratumoral expansion of preexisting T cell clones. A high ratio of regulatory T to T helper 17 cells in pretreatment blood predicts low T cell receptor repertoire diversity in pretreatment blood, a low cytolytic T cell signature in pretreatment tumors, and innate resistance. Our study provides a molecular framework to advance neoadjuvant anti-PD-1 therapy for individuals with resectable head and neck cancer.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias de la Boca/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Nivolumab/uso terapéutico , Receptor de Muerte Celular Programada 1/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Antineoplásicos Inmunológicos/uso terapéutico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/cirugía , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/inmunología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Janus Quinasa 2/genética , Janus Quinasa 2/inmunología , Neoplasias de la Boca/genética , Neoplasias de la Boca/inmunología , Neoplasias de la Boca/cirugía , Mutación , Terapia Neoadyuvante/métodos , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/cirugía , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Análisis de Supervivencia , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Células Th17/patología , Resultado del Tratamiento , Receptor 3 de Factores de Crecimiento Endotelial Vascular/inmunología , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/inmunología
9.
Front Immunol ; 12: 590742, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868223

RESUMEN

High throughput single cell multi-omics platforms, such as mass cytometry (cytometry by time-of-flight; CyTOF), high dimensional imaging (>6 marker; Hyperion, MIBIscope, CODEX, MACSima) and the recently evolved genomic cytometry (Citeseq or REAPseq) have enabled unprecedented insights into many biological and clinical questions, such as hematopoiesis, transplantation, cancer, and autoimmunity. In synergy with constantly adapting new single-cell analysis approaches and subsequent accumulating big data collections from these platforms, whole atlases of cell types and cellular and sub-cellular interaction networks are created. These atlases build an ideal scientific discovery environment for reference and data mining approaches, which often times reveals new cellular disease networks. In this review we will discuss how combinations and fusions of different -omic workflows on a single cell level can be used to examine cellular phenotypes, immune effector functions, and even dynamic changes, such as metabolomic state of different cells in a sample or even in a defined tissue location. We will touch on how pre-print platforms help in optimization and reproducibility of workflows, as well as community outreach. We will also shortly discuss how leveraging single cell multi-omic approaches can be used to accelerate cellular biomarker discovery during clinical trials to predict response to therapy, follow responsive cell types, and define novel druggable target pathways. Single cell proteome approaches already have changed how we explore cellular mechanism in disease and during therapy. Current challenges in the field are how we share these disruptive technologies to the scientific communities while still including new approaches, such as genomic cytometry and single cell metabolomics.


Asunto(s)
Descubrimiento de Drogas/métodos , Citometría de Flujo , Ensayos Analíticos de Alto Rendimiento , Análisis de la Célula Individual/métodos , Biomarcadores , Citometría de Flujo/métodos , Genómica/métodos , Humanos , Metabolómica/métodos , Proteómica/métodos
10.
Cancer Res ; 80(18): 3920-3932, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32561531

RESUMEN

The accessibility of adoptive T-cell transfer therapies (ACT) is hindered by the cost and time required for product development. Here we describe a streamlined ACT protocol using Th17 cells expanded only 4 days ex vivo. While shortening expansion compromised cell yield, this method licensed Th17 cells to eradicate large tumors to a greater extent than cells expanded longer term. Day 4 Th17 cells engrafted, induced release of multiple cytokines including IL6, IL17, MCP-1, and GM-CSF in the tumor-bearing host, and persisted as memory cells. IL6 was a critical component for efficacy of these therapies via its promotion of long-term immunity and resistance to tumor relapse. Mechanistically, IL6 diminished engraftment of FoxP3+ donor T cells, corresponding with robust tumor infiltration by donor effector over regulatory cells for the Day 4 Th17 cell product relative to cell products expanded longer durations ex vivo. Collectively, this work describes a method to rapidly generate therapeutic T-cell products for ACT and implicates IL6 in promoting durable immunity of Th17 cells against large, established solid tumors. SIGNIFICANCE: An abbreviated, 4-day ex vivo expansion method licenses Th17 cells to confer long-lived immunity against solid malignancies via induction of systemic IL6 in the host.See related commentary by Fiering and Ho, p. 3795.


Asunto(s)
Neoplasias , Células Th17 , Tratamiento Basado en Trasplante de Células y Tejidos , Citocinas , Humanos , Interleucina-6 , Neoplasias/terapia
11.
FASEB J ; 34(3): 4204-4218, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31957112

RESUMEN

The accumulation of circulating low-density neutrophils (LDN) has been described in cancer patients and associated with tumor-supportive properties, as opposed to the high-density neutrophils (HDN). Here we aimed to evaluate the clinical significance of circulating LDN in lung cancer patients, and further assessed its diagnostic vs prognostic value. Using mass cytometry (CyTOF), we identified major subpopulations within the circulating LDN/HDN subsets and determined phenotypic modulations of these subsets along tumor progression. LDN were highly enriched in the low-density (LD) fraction of advanced lung cancer patients (median 7.0%; range 0.2%-80%, n = 64), but not in early stage patients (0.7%; 0.05%-6%; n = 35), healthy individuals (0.8%; 0%-3.5%; n = 15), or stable chronic obstructive pulmonary disease (COPD) patients (1.2%; 0.3%-7.4%, n = 13). Elevated LDN (>10%) remarkably related with poorer prognosis in late stage patients. We identified three main neutrophil subsets which proportions are markedly modified in cancer patients, with CD66b+ /CD10low /CXCR4+ /PDL1inter subset almost exclusively found in advanced lung cancer patients. We found substantial variability in subsets between patients, and demonstrated that HDN and LDN retain a degree of inherent spontaneous plasticity. Deep phenotypic characterization of cancer-related circulating neutrophils and their modulation along tumor progression is an important advancement in understanding the role of myeloid cells in lung cancer.


Asunto(s)
Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neutrófilos/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Antígenos CD/inmunología , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/inmunología , Moléculas de Adhesión Celular/metabolismo , Femenino , Citometría de Flujo , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Humanos , Neoplasias Pulmonares/patología , Linfocitos/inmunología , Linfocitos/metabolismo , Masculino , Persona de Mediana Edad , Pronóstico , Enfermedad Pulmonar Obstructiva Crónica/patología
12.
Sci Transl Med ; 12(525)2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31915300

RESUMEN

Cancer-associated thrombocytosis and high concentrations of circulating transforming growth factor-ß1 (TGF-ß1) are frequently observed in patients with progressive cancers. Using genetic and pharmacological approaches, we show a direct link between thrombin catalytic activity and release of mature TGF-ß1 from platelets. We found that thrombin cleaves glycoprotein A repetitions predominant (GARP), a cell surface docking receptor for latent TGF-ß1 (LTGF-ß1) on platelets, resulting in liberation of active TGF-ß1 from the GARP-LTGF-ß1 complex. Furthermore, systemic inhibition of thrombin obliterates TGF-ß1 maturation in platelet releasate and rewires the tumor microenvironment toward favorable antitumor immunity, which translates into efficient cancer control either alone or in combination with programmed cell death 1-based immune checkpoint blockade therapy. Last, we demonstrate that soluble GARP and GARP-LTGF-ß1 complex are present in the circulation of patients with cancer. Together, our data reveal a mechanism of cancer immune evasion that involves thrombin-mediated GARP cleavage and the subsequent TGF-ß1 release from platelets. We propose that blockade of GARP cleavage is a valuable therapeutic strategy to overcome cancer's resistance to immunotherapy.


Asunto(s)
Plaquetas/metabolismo , Evasión Inmune , Proteínas de Unión a TGF-beta Latente/metabolismo , Proteínas de la Membrana/metabolismo , Proteolisis , Trombina/metabolismo , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/inmunología , Carcinogénesis/patología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Progresión de la Enfermedad , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Evasión Inmune/efectos de los fármacos , Proteínas de Unión a TGF-beta Latente/sangre , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/patología , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
13.
Nat Med ; 25(8): 1290-1300, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31332391

RESUMEN

Cytokine dysregulation is a central driver of chronic inflammatory diseases such as multiple sclerosis (MS). Here, we sought to determine the characteristic cellular and cytokine polarization profile in patients with relapsing-remitting multiple sclerosis (RRMS) by high-dimensional single-cell mass cytometry (CyTOF). Using a combination of neural network-based representation learning algorithms, we identified an expanded T helper cell subset in patients with MS, characterized by the expression of granulocyte-macrophage colony-stimulating factor and the C-X-C chemokine receptor type 4. This cellular signature, which includes expression of very late antigen 4 in peripheral blood, was also enriched in the central nervous system of patients with relapsing-remitting multiple sclerosis. In independent validation cohorts, we confirmed that this cell population is increased in patients with MS compared with other inflammatory and non-inflammatory conditions. Lastly, we also found the population to be reduced under effective disease-modifying therapy, suggesting that the identified T cell profile represents a specific therapeutic target in MS.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Esclerosis Múltiple/inmunología , Receptores CXCR4/biosíntesis , Linfocitos T Colaboradores-Inductores/inmunología , Algoritmos , Citocinas/biosíntesis , Humanos , Memoria Inmunológica , Esclerosis Múltiple/líquido cefalorraquídeo
14.
Immunity ; 50(6): 1439-1452.e5, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31178352

RESUMEN

Hematopoietic stem cells (HSCs) are generated from specialized endothelial cells of the embryonic aorta. Inflammatory factors are implicated in regulating mouse HSC development, but which cells in the aorta-gonad-mesonephros (AGM) microenvironment produce these factors is unknown. In the adult, macrophages play both pro- and anti-inflammatory roles. We sought to examine whether macrophages or other hematopoietic cells found in the embryo prior to HSC generation were involved in the AGM HSC-generative microenvironment. CyTOF analysis of CD45+ AGM cells revealed predominance of two hematopoietic cell types, mannose-receptor positive macrophages and mannose-receptor negative myeloid cells. We show here that macrophage appearance in the AGM was dependent on the chemokine receptor Cx3cr1. These macrophages expressed a pro-inflammatory signature, localized to the aorta, and dynamically interacted with nascent and emerging intra-aortic hematopoietic cells (IAHCs). Importantly, upon macrophage depletion, no adult-repopulating HSCs were detected, thus implicating a role for pro-inflammatory AGM-associated macrophages in regulating the development of HSCs.


Asunto(s)
Diferenciación Celular , Desarrollo Embrionario , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Macrófagos/metabolismo , Animales , Biomarcadores , Células Endoteliales/citología , Células Endoteliales/metabolismo , Técnica del Anticuerpo Fluorescente , Inmunofenotipificación , Inflamación/etiología , Inflamación/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Ratones , Ratones Transgénicos , Células Mieloides/citología , Células Mieloides/metabolismo
15.
Cancer Immunol Immunother ; 68(4): 687-697, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30684003

RESUMEN

In cancer, infection and inflammation, the immune system's function can be dysregulated. Instead of fighting disease, immune cells may increase pathology and suppress host-protective immune responses. Myeloid cells show high plasticity and adapt to changing conditions and pathological challenges. Despite their relevance in disease pathophysiology, the identity, heterogeneity and biology of myeloid cells is still poorly understood. We will focus on phenotypical and functional markers of one of the key myeloid regulatory subtypes, the myeloid derived suppressor cells (MDSC), in humans, mice and non-human primates. Technical issues regarding the isolation of the cells from tissues and blood, timing and sample handling of MDSC will be detailed. Localization of MDSC in a tissue context is of crucial importance and immunohistochemistry approaches for this purpose are discussed. A minimal antibody panel for MDSC research is provided as part of the Mye-EUNITER COST action. Strategies for the identification of additional markers applying state of the art technologies such as mass cytometry will be highlighted. Such marker sets can be used to study MDSC phenotypes across tissues, diseases as well as species and will be crucial to accelerate MDSC research in health and disease.


Asunto(s)
Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Animales , Biomarcadores , Separación Celular/métodos , Humanos , Inmunofenotipificación/métodos , Ratones , Neutrófilos/inmunología , Neutrófilos/metabolismo , Primates
16.
Clin Cancer Res ; 25(3): 1036-1049, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30327305

RESUMEN

PURPOSE: Adoptive T-cell therapy (ACT) of cancer, which involves the infusion of ex vivo-engineered tumor epitope reactive autologous T cells into the tumor-bearing host, is a potential treatment modality for cancer. However, the durable antitumor response following ACT is hampered either by loss of effector function or survival of the antitumor T cells. Therefore, strategies to improve the persistence and sustain the effector function of the antitumor T cells are of immense importance. Given the role of metabolism in determining the therapeutic efficacy of T cells, we hypothesize that inhibition of PIM kinases, a family of serine/threonine kinase that promote cell-cycle transition, cell growth, and regulate mTORC1 activity, can improve the potency of T cells in controlling tumor. EXPERIMENTAL DESIGN: The role of PIM kinases in T cells was studied either by genetic ablation (PIM1-/-PIM2-/-PIM3-/-) or its pharmacologic inhibition (pan-PIM kinase inhibitor, PimKi). Murine melanoma B16 was established subcutaneously and treated by transferring tumor epitope gp100-reactive T cells along with treatment regimen that involved inhibiting PIM kinases, anti-PD1 or both. RESULTS: With inhibition of PIM kinases, T cells had significant reduction in their uptake of glucose, and upregulated expression of memory-associated genes that inversely correlate with glycolysis. In addition, the expression of CD38, which negatively regulates the metabolic fitness of the T cells, was also reduced in PimKi-treated cells. Importantly, the efficacy of antitumor T-cell therapy was markedly improved by inhibiting PIM kinases in tumor-bearing mice receiving ACT, and further enhanced by adding anti-PD1 antibody to this combination. CONCLUSIONS: This study highlights the potential therapeutic significance of combinatorial strategies where ACT and inhibition of signaling kinase with checkpoint blockade could improve tumor control.


Asunto(s)
Compuestos de Bifenilo/farmacología , Inmunoterapia Adoptiva/métodos , Neoplasias Experimentales/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Linfocitos T/inmunología , Tiazolidinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Anticuerpos/inmunología , Anticuerpos/farmacología , Línea Celular Tumoral , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/metabolismo , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-pim-1/genética , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Linfocitos T/metabolismo , Resultado del Tratamiento
17.
Nat Med ; 24(11): 1773-1775, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29967347

RESUMEN

In the version of this article initially published, Figs. 5a,c and 6a were incorrect because of an error in a metadata spreadsheet that led to the healthy donor patient 2 (HD2) samples being used twice in the analysis of baseline samples and in the analysis at 12 weeks of anti-PD-1 therapy, while HD3 samples had not been used.

18.
Lancet Oncol ; 19(5): 694-704, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29628312

RESUMEN

BACKGROUND: Immunotherapy with PD-1 or PD-L1 blockade fails to induce a response in about 80% of patients with unselected non-small cell lung cancer (NSCLC), and many of those who do initially respond then develop resistance to treatment. Agonists that target the shared interleukin-2 (IL-2) and IL-15Rßγ pathway have induced complete and durable responses in some cancers, but no studies have been done to assess the safety or efficacy of these agonists in combination with anti-PD-1 immunotherapy. We aimed to define the safety, tolerability, and activity of this drug combination in patients with NSCLC. METHODS: In this non-randomised, open-label, phase 1b trial, we enrolled patients (aged ≥18 years) with previously treated histologically or cytologically confirmed stage IIIB or IV NSCLC from three academic hospitals in the USA. Key eligibility criteria included measurable disease, eligibility to receive anti-PD-1 immunotherapy, and an Eastern Cooperative Oncology Group performance status of 0 or 1. Patients received the anti-PD-1 monoclonal antibody nivolumab intravenously at 3 mg/kg (then 240 mg when US Food and Drug Administration [FDA]-approved dosing changed) every 14 days (either as new treatment or continued treatment at the time of disease progression) and the IL-15 superagonist ALT-803 subcutaneously once per week on weeks 1-5 of four 6-week cycles for 6 months. ALT-803 was administered at one of four escalating dose concentrations: 6, 10, 15, or 20 µg/kg. The primary endpoint was to define safety and tolerability and to establish a recommended phase 2 dose of ALT-803 in combination with nivolumab. Analyses were per-protocol and included any patients who received at least one dose of study treatment. This trial is registered with ClinicalTrials.gov, number NCT02523469; phase 2 enrolment of patients is ongoing. FINDINGS: Between Jan 18, 2016, and June 28, 2017, 23 patients were enrolled and 21 were treated at four dose levels of ALT-803 in combination with nivolumab. Two patients did not receive treatment because of the development of inter-current illness during enrolment, one patient due to leucopenia and one patient due to pulmonary dysfunction. No dose-limiting toxicities were recorded and the maximum tolerated dose was not reached. The most common adverse events were injection-site reactions (in 19 [90%] of 21 patients) and flu-like symptoms (15 [71%]). The most common grade 3 adverse events, occurring in two patients each, were lymphocytopenia and fatigue. A grade 3 myocardial infarction occurred in one patient. No grade 4 or 5 adverse events were recorded. The recommended phase 2 dose of ALT-803 is 20 µg/kg given once per week subcutaneously in combination with 240 mg intravenous nivolumab every 2 weeks. INTERPRETATION: ALT-803 in combination with nivolumab can be safely administered in an outpatient setting. The promising clinical activity observed with the addition of ALT-803 to the regimen of patients with PD-1 monoclonal antibody relapsed and refractory disease shows evidence of anti-tumour activity for a new class of agents in NSCLC. FUNDING: Altor BioScience (a NantWorks company), National Institutes of Health, and Medical University of South Carolina Hollings Cancer Center.


Asunto(s)
Antineoplásicos Inmunológicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Nivolumab/administración & dosificación , Proteínas/administración & dosificación , Anciano , Antineoplásicos Inmunológicos/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/secundario , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Nivolumab/efectos adversos , Proteínas/efectos adversos , Proteínas Recombinantes de Fusión , Factores de Tiempo , Resultado del Tratamiento , Estados Unidos
19.
Nat Med ; 24(2): 144-153, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29309059

RESUMEN

Immune-checkpoint blockade has revolutionized cancer therapy. In particular, inhibition of programmed cell death protein 1 (PD-1) has been found to be effective for the treatment of metastatic melanoma and other cancers. Despite a dramatic increase in progression-free survival, a large proportion of patients do not show durable responses. Therefore, predictive biomarkers of a clinical response are urgently needed. Here we used high-dimensional single-cell mass cytometry and a bioinformatics pipeline for the in-depth characterization of the immune cell subsets in the peripheral blood of patients with stage IV melanoma before and after 12 weeks of anti-PD-1 immunotherapy. During therapy, we observed a clear response to immunotherapy in the T cell compartment. However, before commencing therapy, a strong predictor of progression-free and overall survival in response to anti-PD-1 immunotherapy was the frequency of CD14+CD16-HLA-DRhi monocytes. We confirmed this by conventional flow cytometry in an independent, blinded validation cohort, and we propose that the frequency of monocytes in PBMCs may serve in clinical decision support.


Asunto(s)
Melanoma , Receptor de Muerte Celular Programada 1/inmunología , Biomarcadores , Humanos , Inmunoterapia , Análisis de la Célula Individual
20.
J Crohns Colitis ; 12(3): 355-368, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29136128

RESUMEN

BACKGROUND AND AIMS: During active inflammation, intraluminal intestinal pH is decreased in patients with inflammatory bowel disease [IBD]. Acidic pH may play a role in IBD pathophysiology. Recently, proton-sensing G-protein coupled receptors were identified, including GPR4, OGR1 [GPR68], and TDAG8 [GPR65]. We investigated whether GPR4 is involved in intestinal inflammation. METHODS: The role of GPR4 was assessed in murine colitis models by chronic dextran sulphate sodium [DSS] administration and by cross-breeding into an IL-10 deficient background for development of spontaneous colitis. Colitis severity was assessed by body weight, colonoscopy, colon length, histological score, cytokine mRNA expression, and myeloperoxidase [MPO] activity. In the spontaneous Il-10-/- colitis model, the incidence of rectal prolapse and characteristics of lamina propria leukocytes [LPLs] were analysed. RESULTS: Gpr4-/- mice showed reduced body weight loss and histology score after induction of chronic DSS colitis. In Gpr4-/-/Il-10-/- double knock-outs, the onset and progression of rectal prolapse were significantly delayed and mitigated compared with Gpr4+/+/Il-10-/- mice. Double knock-out mice showed lower histology scores, MPO activity, CD4+ T helper cell infiltration, IFN-γ, iNOS, MCP-1 [CCL2], CXCL1, and CXCL2 expression compared with controls. In colon, GPR4 mRNA was detected in endothelial cells, some smooth muscle cells, and some macrophages. CONCLUSIONS: Absence of GPR4 ameliorates colitis in IBD animal models, indicating an important regulatory role in mucosal inflammation, thus providing a new link between tissue pH and the immune system. Therapeutic inhibition of GPR4 may be beneficial for the treatment of IBD.


Asunto(s)
Colitis/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Prolapso Rectal/etiología , Animales , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/patología , Sulfato de Dextran , Células Endoteliales/metabolismo , Femenino , Concentración de Iones de Hidrógeno , Interferón gamma/metabolismo , Interleucina-10/genética , Mucosa Intestinal/patología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Noqueados , Miocitos del Músculo Liso/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Peroxidasa/metabolismo , Protones , ARN Mensajero/metabolismo , Prolapso Rectal/genética , Linfocitos T Colaboradores-Inductores/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA