Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Redox Biol ; 72: 103161, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677214

RESUMEN

Ischaemia-reperfusion (IR) injury is the paradoxical consequence of the rapid restoration of blood flow to an ischaemic organ. Although reperfusion is essential for tissue survival in conditions such as myocardial infarction and stroke, the excessive production of mitochondrial reactive oxygen species (ROS) upon reperfusion initiates the oxidative damage that underlies IR injury, by causing cell death and inflammation. This ROS production is caused by an accumulation of the mitochondrial metabolite succinate during ischaemia, followed by its rapid oxidation upon reperfusion by succinate dehydrogenase (SDH), driving superoxide production at complex I by reverse electron transport. Inhibitors of SDH, such as malonate, show therapeutic potential by decreasing succinate oxidation and superoxide production upon reperfusion. To better understand the mechanism of mitochondrial ROS production upon reperfusion and to assess potential therapies, we set up an in vitro model of IR injury. For this, isolated mitochondria were incubated anoxically with succinate to mimic ischaemia and then rapidly reoxygenated to replicate reperfusion, driving a burst of ROS formation. Using this system, we assess the factors that contribute to the magnitude of mitochondrial ROS production in heart, brain, and kidney mitochondria, as well as screening for inhibitors of succinate oxidation with therapeutic potential.


Asunto(s)
Mitocondrias , Daño por Reperfusión , Superóxidos , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Animales , Superóxidos/metabolismo , Mitocondrias/metabolismo , Ácido Succínico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/antagonistas & inhibidores , Oxidación-Reducción , Malonatos/farmacología , Malonatos/metabolismo , Masculino , Ratas , Ratones
3.
Nat Commun ; 15(1): 3302, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658535

RESUMEN

Uncontrolled secretion of ECM proteins, such as collagen, can lead to excessive scarring and fibrosis and compromise tissue function. Despite the widespread occurrence of fibrotic diseases and scarring, effective therapies are lacking. A promising approach would be to limit the amount of collagen released from hyperactive fibroblasts. We have designed membrane permeant peptide inhibitors that specifically target the primary interface between TANGO1 and cTAGE5, an interaction that is required for collagen export from endoplasmic reticulum exit sites (ERES). Application of the peptide inhibitors leads to reduced TANGO1 and cTAGE5 protein levels and a corresponding inhibition in the secretion of several ECM components, including collagens. Peptide inhibitor treatment in zebrafish results in altered tissue architecture and reduced granulation tissue formation during cutaneous wound healing. The inhibitors reduce secretion of several ECM proteins, including collagens, fibrillin and fibronectin in human dermal fibroblasts and in cells obtained from patients with a generalized fibrotic disease (scleroderma). Taken together, targeted interference of the TANGO1-cTAGE5 binding interface could enable therapeutic modulation of ERES function in ECM hypersecretion, during wound healing and fibrotic processes.


Asunto(s)
Cicatriz , Colágeno , Fibroblastos , Cicatrización de Heridas , Pez Cebra , Humanos , Animales , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Colágeno/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Cicatriz/metabolismo , Cicatriz/patología , Cicatriz/tratamiento farmacológico , Piel/metabolismo , Piel/patología , Piel/efectos de los fármacos , Fibrosis , Péptidos/farmacología , Péptidos/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos
4.
J Dtsch Dermatol Ges ; 22(4): 605-620, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38426689

RESUMEN

The updated S2k guideline deals with the diagnosis and therapy of localized scleroderma (LoS). LoS represents a spectrum of sclerotic skin diseases in which, depending on the subtype and localisation, structures such as adipose tissue, muscles, joints, and bones may also be affected. Involvement of internal organs or progression to systemic sclerosis does not occur. LoS can be classified into four main forms: limited, generalized, linear, and mixed forms, with some additional subtypes. For cases of limited skin involvement, the guideline primarily recommends therapy with topical corticosteroids. UV therapy can also be recommended. In subtypes with severe skin or musculoskeletal involvement, systemic therapy with methotrexate is recommended. During the active phase of the disease, systemic glucocorticosteroids can be used additionally. In cases of methotrexate and steroid refractory courses, contraindications, or intolerance, mycophenolate mofetil, mycophenolic acid, or abatacept can be considered as second-line systemic therapies. In the case of linear LoS, autologous adipose-derived stem cell transplantation can also be performed for correcting soft tissue defects.


Asunto(s)
Fármacos Dermatológicos , Esclerodermia Localizada , Humanos , Metotrexato/uso terapéutico , Esclerodermia Localizada/diagnóstico , Esclerodermia Localizada/terapia , Piel , Fármacos Dermatológicos/uso terapéutico , Ácido Micofenólico/uso terapéutico
5.
Artículo en Inglés | MEDLINE | ID: mdl-38456518

RESUMEN

The term 'sclerosing diseases of the skin' comprises specific dermatological entities, which have fibrotic changes of the skin in common. These diseases mostly manifest in different clinical subtypes according to cutaneous and extracutaneous involvement and can sometimes be difficult to distinguish from each other. The present consensus provides an update to the 2017 European Dermatology Forum Guidelines, focusing on characteristic clinical and histopathological features, diagnostic scores and the serum autoantibodies most useful for differential diagnosis. In addition, updated strategies for the first- and advanced-line therapy of sclerosing skin diseases are addressed in detail. Part 2 of this consensus provides clinicians with an overview of the diagnosis and treatment of scleromyxoedema and scleroedema (of Buschke).

6.
Redox Biol ; 67: 102894, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37839355

RESUMEN

The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Humanos , Especies Reactivas de Oxígeno/metabolismo , Miocardio/metabolismo , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Oxidación-Reducción
7.
Semin Arthritis Rheum ; 63: 152266, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37826898

RESUMEN

BACKGROUND: There is a strong rationale to develop locally-acting surgical treatments for digital ulcers (DUs) in patients with systemic sclerosis (SSc). Our aim was to examine the safety and efficacy of local surgical management for SSc-DU. METHODS: A systematic literature review was carried out until to August 2022 using 7 different databases. Original research studies concerning adult patients with SSc-DUs, and local surgical treatments were analysed using the PICO framework. We included randomized controlled trials, prospective/retrospective studies, and case series (minimum of 3 patients) References were independently screened by two reviewers including assessment of the risk of bias using validated tools. RESULTS: Out of 899, 13eligible articles were included. Autologous fat (adipose tissue AT) grafting was the surgical modality most identified (7 studies, 1 randomized controlled double blinded trial and 6 prospective open-label single arm studies). The healing rate (HR) with autologous fat grafting (4 studies) was 66-100 %. Three studies reported autologous adipose-derived stromal vascular fraction grafting: HR of 32-60 %. Bone marrow derived cell transplantation in a single study showed 100 % healing rate over 4-24 weeks. Surgical sympathectomy was examined in 3 studies, prospective without comparator with a median healing rate of 81 %. Two surgical studies (of direct microsurgical revascularisation and microsurgical arteriolysis) showed 100 % healing of ulcers, with no complications. CONCLUSION: Several surgical approaches for SSc-DUs have demonstrated some degree of safety and effectiveness for DU healing. However, there are significant methodological issues. Future studies are warranted to rigorously investigate surgical interventions for SSc-DUs.


Asunto(s)
Esclerodermia Sistémica , Úlcera Cutánea , Adulto , Humanos , Dedos/cirugía , Estudios Prospectivos , Estudios Retrospectivos , Úlcera Cutánea/etiología , Úlcera Cutánea/cirugía , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/cirugía
8.
Semin Arthritis Rheum ; 63: 152267, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37778090

RESUMEN

INTRODUCTION: Digital ulcers (DUs) are difficult to treat in patients with systemic sclerosis (SSc) and systemic (i.e., pharmacological) therapy is currently considered the 'standard of care'. Our aim was to examine the safety and efficacy of local, non-surgical treatment for SSc-DUs. METHODS: A systematic literature review (SLR) of original research articles up to August, 29 2022 was performed according to the PICO framework. References were independently screened by two reviewers and risk of bias was assed using validated tools. Due to study heterogeneity narrative summaries are used to present data. RESULTS: Among 899 retrieved references, 14 articles were included (2 randomised trials (RTs), and 12 observational (OBS) studies). The most frequently studied procedure (5 studies) was botulin A toxin (hand or single finger) injection with a reported healing rate (HR) of 71%-100%. Amniotic and hydrocolloid membranes were examined in one study each and associated with a good HR. Tadalafil 2% cream was studied in a single study with a reduction in the number of DUs. Vitamin E gel was associated with a reduction in ulcer healing time. Low-level light therapy, hydrodissection and corticosteroid injection, extracorporeal shock wave (ESW) and photobiomodulation were evaluated in a single study each and showed a positive trend. Dimethyl sulfoxide was associated with significant local toxicity. CONCLUSIONS: A range of non-surgical, local treatments for SSc-DUs have been explored and showed efficacy to some extent. We have identified methodological flaws that should be avoided in the design of future studies to explore locally-acting treatments for SSc-DUs.


Asunto(s)
Esclerodermia Sistémica , Úlcera Cutánea , Humanos , Úlcera Cutánea/etiología , Úlcera Cutánea/terapia , Dedos , Mano , Esclerodermia Sistémica/terapia , Esclerodermia Sistémica/tratamiento farmacológico
9.
Polymers (Basel) ; 15(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37835903

RESUMEN

The utilization of materials in medical implants, serving as substitutes for non-functional biological structures, supporting damaged tissues, or reinforcing active organs, holds significant importance in modern healthcare, positively impacting the quality of life for millions of individuals worldwide. However, certain implants may only be required temporarily to aid in the healing process of diseased or injured tissues and tissue expansion. Biodegradable metals, including zinc (Zn), magnesium (Mg), iron, and others, present a new paradigm in the realm of implant materials. Ongoing research focuses on developing optimized materials that meet medical standards, encompassing controllable corrosion rates, sustained mechanical stability, and favorable biocompatibility. Achieving these objectives involves refining alloy compositions and tailoring processing techniques to carefully control microstructures and mechanical properties. Among the materials under investigation, Mg- and Zn-based biodegradable materials and their alloys demonstrate the ability to provide necessary support during tissue regeneration while gradually degrading over time. Furthermore, as essential elements in the human body, Mg and Zn offer additional benefits, including promoting wound healing, facilitating cell growth, and participating in gene generation while interacting with various vital biological functions. This review provides an overview of the physiological function and significance for human health of Mg and Zn and their usage as implants in tissue regeneration using tissue scaffolds. The scaffold qualities, such as biodegradation, mechanical characteristics, and biocompatibility, are also discussed.

10.
J Scleroderma Relat Disord ; 8(3): 169-182, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37744047

RESUMEN

Introduction: Heart involvement is a common problem in systemic sclerosis. Recently, a definition of systemic sclerosis primary heart involvement had been proposed. Our aim was to establish consensus guidance on the screening, diagnosis and follow-up of systemic sclerosis primary heart involvement patients. Methods: A systematic literature review was performed to investigate the tests used to evaluate heart involvement in systemic sclerosis. The extracted data were categorized into relevant domains (conventional radiology, electrocardiography, echocardiography, cardiac magnetic resonance imaging, laboratory, and others) and presented to experts and one patient research partner, who discussed the data and added their opinion. This led to the formulation of overarching principles and guidance statements, then reviewed and voted on for agreement. Consensus was attained when the mean agreement was ⩾7/10 and of ⩾70% of voters. Results: Among 2650 publications, 168 met eligibility criteria; the data extracted were discussed over three meetings. Seven overarching principles and 10 guidance points were created, revised and voted on. The consensus highlighted the importance of patient counseling, differential diagnosis and multidisciplinary team management, as well as defining screening and diagnostic approaches. The initial core evaluation should integrate history, physical examination, rest electrocardiography, trans-thoracic echocardiography and standard serum cardiac biomarkers. Further investigations should be individually tailored and decided through a multidisciplinary management. The overall mean agreement was 9.1/10, with mean 93% of experts voting above 7/10. Conclusion: This consensus-based guidance on screening, diagnosis and follow-up of systemic sclerosis primary heart involvement provides a foundation for standard of care and future feasibility studies that are ongoing to support its application in clinical practice.

11.
Basic Res Cardiol ; 118(1): 34, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37639068

RESUMEN

In the context of myocardial infarction, the burst of superoxide generated by reverse electron transport (RET) at complex I in mitochondria is a crucial trigger for damage during ischaemia/reperfusion (I/R) injury. Here we outline the necessary conditions for superoxide production by RET at complex I and how it can occur during reperfusion. In addition, we explore various pathways that are implicated in generating the conditions for RET to occur and suggest potential therapeutic strategies to target RET, aiming to achieve cardioprotection.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión , Humanos , Transporte de Electrón , Superóxidos , Fosforilación Oxidativa , Mitocondrias , Infarto del Miocardio/prevención & control
12.
Ann Rheum Dis ; 82(11): 1474-1486, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37479494

RESUMEN

OBJECTIVES: Activation of fibroblasts is a hallmark of fibrotic processes. Besides cytokines and growth factors, fibroblasts are regulated by the extracellular matrix environment through receptors such as integrins, which transduce biochemical and mechanical signals enabling cells to mount appropriate responses according to biological demands. The aim of this work was to investigate the in vivo role of collagen-fibroblast interactions for regulating fibroblast functions and fibrosis. METHODS: Triple knockout (tKO) mice with a combined ablation of integrins α1ß1, α2ß1 and α11ß1 were created to address the significance of integrin-mediated cell-collagen communication. Properties of primary dermal fibroblasts lacking collagen-binding integrins were delineated in vitro. Response of the tKO mice skin to bleomycin induced fibrotic challenge was assessed. RESULTS: Triple integrin-deficient mice develop normally, are transiently smaller and reveal mild alterations in mechanoresilience of the skin. Fibroblasts from these mice in culture show defects in cytoskeletal architecture, traction stress generation, matrix production and organisation. Ablation of the three integrins leads to increased levels of discoidin domain receptor 2, an alternative receptor recognising collagens in vivo and in vitro. However, this overexpression fails to compensate adhesion and spreading defects on collagen substrates in vitro. Mice lacking collagen-binding integrins show a severely attenuated fibrotic response with impaired mechanotransduction, reduced collagen production and matrix organisation. CONCLUSIONS: The data provide evidence for a crucial role of collagen-binding integrins in fibroblast force generation and differentiation in vitro and for matrix deposition and tissue remodelling in vivo. Targeting fibroblast-collagen interactions might represent a promising therapeutic approach to regulate connective tissue deposition in fibrotic diseases.

13.
Rheumatology (Oxford) ; 62(12): 3785-3800, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37335850

RESUMEN

OBJECTIVE: To evaluate the evidence concerning systemic pharmacological treatments for SSc digital ulcers (DUs) to inform the development of evidence-based treatment guidelines. METHODS: A systematic literature review of seven databases was performed to identify all original research studies of adult patients with SSc DUs. Randomized controlled trials (RCTs) and prospective longitudinal observational studies (OBSs) were eligible for inclusion. Data were extracted, applying the patient, intervention, comparison, outcome framework, and risk of bias (RoB) was assessed. Due to study heterogeneity, narrative summaries were used to present data. RESULTS: Forty-seven studies that evaluated the treatment efficacy or safety of pharmacological therapies were identified among 4250 references. Data from 18 RCTs of 1927 patients and 29 OBSs of 661 patients, at various RoB (total 2588 patients) showed that i.v. iloprost, phosphodiesterase-5 inhibitors and atorvastatin are effective for the treatment of active DUs. Bosentan reduced the rate of future DUs in two RCTs (moderate RoB) and eight OBSs at low to high RoB. Two small studies (moderate RoB) indicate that Janus kinase inhibitors may be effective for the treatment of active DUs, otherwise there are no data to support the use of immunosuppression or anti-platelet agents in the management of DUs. CONCLUSION: There are several systemic treatments, across four medication classes, that are effective therapies for the management of SSc DUs. However, a lack of robust data means it is not possible to define the optimal treatment regimen for SSc DUs. The relatively low quality of evidence available has highlighted further areas of research need.


Asunto(s)
Esclerodermia Sistémica , Úlcera Cutánea , Adulto , Humanos , Úlcera Cutánea/tratamiento farmacológico , Úlcera Cutánea/etiología , Dedos , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/tratamiento farmacológico , Bosentán/uso terapéutico
14.
Redox Biol ; 59: 102600, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36630820

RESUMEN

Current treatments for acute ischemic stroke aim to reinstate a normal perfusion in the ischemic territory but can also cause significant ischemia-reperfusion (IR) injury. Previous data in experimental models of stroke show that ischemia leads to the accumulation of succinate, and, upon reperfusion, the accumulated succinate is rapidly oxidized by succinate dehydrogenase (SDH) to drive superoxide production at mitochondrial complex I. Despite this process initiating IR injury and causing further tissue damage, the potential of targeting succinate metabolism to minimize IR injury remains unexplored. Using both quantitative and untargeted high-resolution metabolomics, we show a time-dependent accumulation of succinate in both human and mouse brain exposed to ischemia ex vivo. In a mouse model of ischemic stroke/mechanical thrombectomy mass spectrometry imaging (MSI) shows that succinate accumulation is confined to the ischemic region, and that the accumulated succinate is rapidly oxidized upon reperfusion. Targeting succinate oxidation by systemic infusion of the SDH inhibitor malonate upon reperfusion leads to a dose-dependent decrease in acute brain injury. Together these findings support targeting succinate metabolism upon reperfusion to decrease IR injury as a valuable adjunct to mechanical thrombectomy in ischemic stroke.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Accidente Cerebrovascular , Ratones , Animales , Humanos , Isquemia , Daño por Reperfusión/terapia , Daño por Reperfusión/metabolismo , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/metabolismo , Ácido Succínico/metabolismo , Trombectomía
15.
Cardiovasc Res ; 119(2): 336-356, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35875883

RESUMEN

Long COVID has become a world-wide, non-communicable epidemic, caused by long-lasting multiorgan symptoms that endure for weeks or months after SARS-CoV-2 infection has already subsided. This scientific document aims to provide insight into the possible causes and therapeutic options available for the cardiovascular manifestations of long COVID. In addition to chronic fatigue, which is a common symptom of long COVID, patients may present with chest pain, ECG abnormalities, postural orthostatic tachycardia, or newly developed supraventricular or ventricular arrhythmias. Imaging of the heart and vessels has provided evidence of chronic, post-infectious perimyocarditis with consequent left or right ventricular failure, arterial wall inflammation, or microthrombosis in certain patient populations. Better understanding of the underlying cellular and molecular mechanisms of long COVID will aid in the development of effective treatment strategies for its cardiovascular manifestations. A number of mechanisms have been proposed, including those involving direct effects on the myocardium, microthrombotic damage to vessels or endothelium, or persistent inflammation. Unfortunately, existing circulating biomarkers, coagulation, and inflammatory markers, are not highly predictive for either the presence or outcome of long COVID when measured 3 months after SARS-CoV-2 infection. Further studies are needed to understand underlying mechanisms, identify specific biomarkers, and guide future preventive strategies or treatments to address long COVID and its cardiovascular sequelae.


Asunto(s)
COVID-19 , Cardiopatías , Humanos , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Corazón , Miocardio , Prueba de COVID-19
16.
Arthritis Res Ther ; 24(1): 258, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36424638

RESUMEN

BACKGROUND: Current recommendations on the management of systemic sclerosis (SSc) suggest that autologous hematopoietic stem cell therapy (HSCT) can be a rescue therapy for patients with rapidly progressive SSc. OBJECTIVES: To assess the safety and efficacy of HSCT for patients with SSc and to compare these with non-HSCT patients in a control cohort with adjusted risk factors. METHODS: A retrospective analysis of data from the multicentric German network for systemic scleroderma (DNSS) with 5000 patients with SSc. Control groups consisted of all patients with diffuse cutaneous (dc)-SSc (group A) and an adjusted high-risk cohort of male patients with Scl70-positive dc-SSc (group B). RESULTS: Eighty SSc patients received an HSCT 4.1 ± 4.8 years after SSc diagnosis. Among them, 86.3% had dc-SSc, 43.5% were males, and 71.3% were positive for Scl70 antibodies. The control group A (n=1513) showed a significant underrepresentation of these risk factors for mortality. When the survival of the control group B (n=240) was compared with the HSCT group, a lower mortality of the latter was observed instead. Within 5 years after HSCT, we observed an improvement of the mRSS from 17.6 ± 11.5 to 11.0 ± 8.5 (p=0.001) and a stabilization of the DLCO. We did not see differences in transplant-related mortality between patients who received HSCT within 3 years after SSc diagnosis or later. CONCLUSION: Our analysis of real-life data show that the distribution of risk factors for mortality is critical when HSCT cohorts are compared with non-HSCT control groups.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Esclerodermia Difusa , Esclerodermia Sistémica , Humanos , Masculino , Femenino , Estudios Retrospectivos , Trasplante Autólogo , Esclerodermia Sistémica/terapia , Sistema de Registros
19.
Circ Res ; 131(6): 528-541, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35959683

RESUMEN

BACKGROUND: Inhibiting SDH (succinate dehydrogenase), with the competitive inhibitor malonate, has shown promise in ameliorating ischemia/reperfusion injury. However, key for translation to the clinic is understanding the mechanism of malonate entry into cells to enable inhibition of SDH, its mitochondrial target, as malonate itself poorly permeates cellular membranes. The possibility of malonate selectively entering the at-risk heart tissue on reperfusion, however, remains unexplored. METHODS: C57BL/6J mice, C2C12 and H9c2 myoblasts, and HeLa cells were used to elucidate the mechanism of selective malonate uptake into the ischemic heart upon reperfusion. Cells were treated with malonate while varying pH or together with transport inhibitors. Mouse hearts were either perfused ex vivo (Langendorff) or subjected to in vivo left anterior descending coronary artery ligation as models of ischemia/reperfusion injury. Succinate and malonate levels were assessed by liquid chromatography-tandem mass spectrometry LC-MS/MS, in vivo by mass spectrometry imaging, and infarct size by TTC (2,3,5-triphenyl-2H-tetrazolium chloride) staining. RESULTS: Malonate was robustly protective against cardiac ischemia/reperfusion injury, but only if administered at reperfusion and not when infused before ischemia. The extent of malonate uptake into the heart was proportional to the duration of ischemia. Malonate entry into cardiomyocytes in vivo and in vitro was dramatically increased at the low pH (≈6.5) associated with ischemia. This increased uptake of malonate was blocked by selective inhibition of MCT1 (monocarboxylate transporter 1). Reperfusion of the ischemic heart region with malonate led to selective SDH inhibition in the at-risk region. Acid-formulation greatly enhances the cardioprotective potency of malonate. CONCLUSIONS: Cardioprotection by malonate is dependent on its entry into cardiomyocytes. This is facilitated by the local decrease in pH that occurs during ischemia, leading to its selective uptake upon reperfusion into the at-risk tissue, via MCT1. Thus, malonate's preferential uptake in reperfused tissue means it is an at-risk tissue-selective drug that protects against cardiac ischemia/reperfusion injury.


Asunto(s)
Daño por Reperfusión Miocárdica , Animales , Cromatografía Liquida , Células HeLa , Humanos , Isquemia , Malonatos/farmacología , Malonatos/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos , Espectrometría de Masas en Tándem
20.
Redox Biol ; 55: 102429, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35961099

RESUMEN

Mitochondria-targeted H2S donors are thought to protect against acute ischemia-reperfusion (IR) injury by releasing H2S that decreases oxidative damage. However, the rate of H2S release by current donors is too slow to be effective upon administration following reperfusion. To overcome this limitation here we develop a mitochondria-targeted agent, MitoPerSulf that very rapidly releases H2S within mitochondria. MitoPerSulf is quickly taken up by mitochondria, where it reacts with endogenous thiols to generate a persulfide intermediate that releases H2S. MitoPerSulf is acutely protective against cardiac IR injury in mice, due to the acute generation of H2S that inhibits respiration at cytochrome c oxidase thereby preventing mitochondrial superoxide production by lowering the membrane potential. Mitochondria-targeted agents that rapidly generate H2S are a new class of therapy for the acute treatment of IR injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA