Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(5): 104712, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37060997

RESUMEN

Autophagy is a key process in eukaryotes to maintain cellular homeostasis by delivering cellular components to lysosomes/vacuoles for degradation and reuse of the resulting metabolites. Membrane rearrangements and trafficking events are mediated by the core machinery of autophagy-related (Atg) proteins, which carry out a variety of functions. How Atg9, a lipid scramblase and the only conserved transmembrane protein within this core Atg machinery, is trafficked during autophagy remained largely unclear. Here, we addressed this question in yeast Saccharomyces cerevisiae and found that retromer complex and dynamin Vps1 mutants alter Atg9 subcellular distribution and severely impair the autophagic flux by affecting two separate autophagy steps. We provide evidence that Vps1 interacts with Atg9 at Atg9 reservoirs. In the absence of Vps1, Atg9 fails to reach the sites of autophagosome formation, and this results in an autophagy defect. The function of Vps1 in autophagy requires its GTPase activity. Moreover, Vps1 point mutants associated with human diseases such as microcytic anemia and Charcot-Marie-Tooth are unable to sustain autophagy and affect Atg9 trafficking. Together, our data provide novel insights on the role of dynamins in Atg9 trafficking and suggest that a defect in this autophagy step could contribute to severe human pathologies.


Asunto(s)
Autofagosomas , Proteínas de Saccharomyces cerevisiae , Humanos , Autofagosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Dinaminas/metabolismo , Vacuolas/metabolismo , Autofagia , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Transporte de Proteínas , Proteínas de Unión al GTP/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de la Membrana/metabolismo
2.
J Cell Sci ; 136(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36644903

RESUMEN

Autophagy is a catabolic process during which cytosolic material is enwrapped in a newly formed double-membrane structure called the autophagosome, and subsequently targeted for degradation in the lytic compartment of the cell. The fusion of autophagosomes with the lytic compartment is a tightly regulated step and involves membrane-bound SNARE proteins. These play a crucial role as they promote lipid mixing and fusion of the opposing membranes. Among the SNARE proteins implicated in autophagy, the essential SNARE protein YKT6 is the only SNARE protein that is evolutionarily conserved from yeast to humans. Here, we show that alterations in YKT6 function, in both mammalian cells and nematodes, produce early and late autophagy defects that result in reduced survival. Moreover, mammalian autophagosomal YKT6 is phospho-regulated by the ULK1 kinase, preventing premature bundling with the lysosomal SNARE proteins and thereby inhibiting autophagosome-lysosome fusion. Together, our findings reveal that timely regulation of the YKT6 phosphorylation status is crucial throughout autophagy progression and cell survival.


Asunto(s)
Autofagia , Proteínas de Saccharomyces cerevisiae , Animales , Humanos , Proteínas R-SNARE/metabolismo , Fosforilación , Autofagia/genética , Autofagosomas/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Fusión de Membrana/fisiología , Saccharomyces cerevisiae/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Autophagy Rep ; 1(1): 345-367, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38106996

RESUMEN

Macroautophagy/autophagy is a conserved catabolic pathway during which cellular material is sequestered within newly formed double-membrane vesicles called autophagosomes and delivered to the lytic compartment of eukaryotic cells for degradation. Autophagosome biogenesis depends on the core autophagy-related (Atg) machinery, and involves a massive supply and remodelling of membranes. To gain insight into the lipid remodelling mechanisms during autophagy, we have systematically investigated whether lipid flippases are required for this pathway in the yeast Saccharomyces cerevisiae. We found that the flippase Drs2, which transfers phosphatidylserine and phosphatidylethanolamine from the lumenal to the cytosolic leaflet of the limiting membrane at the trans-Golgi network, is required for normal progression of autophagy. We also show that Drs2 is important for the trafficking of the core Atg protein Atg9. Atg9 is a transmembrane protein important for autophagosome biogenesis and its anterograde transport from its post-Golgi reservoirs to the site of autophagosome formation is severely impaired in the absence of Drs2. Thus, our results identify a novel autophagy player and highlight that membrane asymmetry regulates early autophagy steps.

4.
Biochim Biophys Acta Mol Cell Res ; 1868(9): 119064, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34048862

RESUMEN

Autophagy is a degradative pathway during which autophagosomes are formed that enwrap cytosolic material destined for turnover within the lytic compartment. Autophagosome biogenesis requires controlled lipid and membrane rearrangements to allow the formation of an autophagosomal seed and its subsequent elongation into a fully closed and fusion-competent double membrane vesicle. Different membrane remodeling events are required, which are orchestrated by the distinct autophagy machinery. An important player among these autophagy proteins is the small lipid-modifier Atg8. Atg8 proteins facilitate various aspects of autophagosome formation and serve as a binding platform for autophagy factors. Also Rab GTPases have been implicated in autophagosome biogenesis. As Atg8 proteins interact with several Rab GTPase regulators, they provide a possible link between autophagy progression and Rab GTPase activity. Here, we review central aspects in membrane dynamics during autophagosome biogenesis with a focus on Atg8 proteins and selected Rab GTPases.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas de Unión al GTP rab/metabolismo , Animales , Humanos
5.
EMBO Rep ; 21(12): e51869, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33274589

RESUMEN

Autophagy mediates the degradation of cytoplasmic material. Upon autophagy induction, autophagosomes form a sealed membrane around the cargo and fuse with the lytic compartment to release the cargo for degradation. In order to avoid premature fusion of immature autophagosomal membranes with the lytic compartment, this process needs to be tightly regulated. Several factors mediating autophagosome-vacuole fusion have recently been identified. In budding yeast, autophagosome-vacuole fusion requires the R-SNARE Ykt6 on the autophagosome, together with the three Q-SNAREs Vam3, Vam7, and Vti1 on the vacuole. However, how these SNAREs are regulated during the fusion process is poorly understood. In this study, we investigate the regulation of Ykt6. We found that Ykt6 is directly phosphorylated by Atg1 kinase, which keeps this SNARE in an inactive state. Ykt6 phosphorylation prevents SNARE bundling by disrupting its interaction with the vacuolar SNAREs Vam3 and Vti1, thereby preventing premature autophagosome-vacuole fusion. These findings shed new light on the regulation of autophagosome-vacuole fusion and reveal a further step in autophagy controlled by the Atg1 kinase.


Asunto(s)
Proteínas SNARE , Proteínas de Saccharomyces cerevisiae , Autofagosomas , Autofagia , Fusión de Membrana , Proteínas R-SNARE , Proteínas SNARE/genética , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas
6.
J Virol ; 94(4)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31776274

RESUMEN

Coronavirus (CoV) nucleocapsid (N) proteins are key for incorporating genomic RNA into progeny viral particles. In infected cells, N proteins are present at the replication-transcription complexes (RTCs), the sites of CoV RNA synthesis. It has been shown that N proteins are important for viral replication and that the one of mouse hepatitis virus (MHV), a commonly used model CoV, interacts with nonstructural protein 3 (nsp3), a component of the RTCs. These two aspects of the CoV life cycle, however, have not been linked. We found that the MHV N protein binds exclusively to nsp3 and not other RTC components by using a systematic yeast two-hybrid approach, and we identified two distinct regions in the N protein that redundantly mediate this interaction. A selective N protein variant carrying point mutations in these two regions fails to bind nsp3 in vitro, resulting in inhibition of its recruitment to RTCs in vivo Furthermore, in contrast to the wild-type N protein, this N protein variant impairs the stimulation of genomic RNA and viral mRNA transcription in vivo and in vitro, which in turn leads to impairment of MHV replication and progeny production. Altogether, our results show that N protein recruitment to RTCs, via binding to nsp3, is an essential step in the CoV life cycle because it is critical for optimal viral RNA synthesis.IMPORTANCE CoVs have long been regarded as relatively harmless pathogens for humans. Severe respiratory tract infection outbreaks caused by severe acute respiratory syndrome CoV and Middle East respiratory syndrome CoV, however, have caused high pathogenicity and mortality rates in humans. These outbreaks highlighted the relevance of being able to control CoV infections. We used a model CoV, MHV, to investigate the importance of the recruitment of N protein, a central component of CoV virions, to intracellular platforms where CoVs replicate, transcribe, and translate their genomes. By identifying the principal binding partner at these intracellular platforms and generating a specific mutant, we found that N protein recruitment to these locations is crucial for promoting viral RNA synthesis. Moreover, blocking this recruitment strongly inhibits viral infection. Thus, our results explain an important aspect of the CoV life cycle and reveal an interaction of viral proteins that could be targeted in antiviral therapies.


Asunto(s)
Virus de la Hepatitis Murina/fisiología , Proteínas de la Nucleocápside/metabolismo , ARN Viral/biosíntesis , Transcripción Genética/fisiología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/fisiología , Animales , Línea Celular , Humanos , Ratones , Proteínas de la Nucleocápside/genética , ARN Viral/genética , Proteínas no Estructurales Virales/genética
7.
J Cell Sci ; 132(22)2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31649143

RESUMEN

Autophagy is initiated by the formation of a phagophore assembly site (PAS), the precursor of autophagosomes. In mammals, autophagosome formation sites form throughout the cytosol in specialized subdomains of the endoplasmic reticulum (ER). In yeast, the PAS is also generated close to the ER, but always in the vicinity of the vacuole. How the PAS is anchored to the vacuole and the functional significance of this localization are unknown. Here, we investigated the role of the PAS-vacuole connection for bulk autophagy in the yeast Saccharomyces cerevisiae We show that Vac8 constitutes a vacuolar tether that stably anchors the PAS to the vacuole throughout autophagosome biogenesis via the PAS component Atg13. S. cerevisiae lacking Vac8 show inefficient autophagosome-vacuole fusion, and form fewer and smaller autophagosomes that often localize away from the vacuole. Thus, the stable PAS-vacuole connection established by Vac8 creates a confined space for autophagosome biogenesis between the ER and the vacuole, and allows spatial coordination of autophagosome formation and autophagosome-vacuole fusion. These findings reveal that the spatial regulation of autophagosome formation at the vacuole is required for efficient bulk autophagy.


Asunto(s)
Autofagosomas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Autofagia , Saccharomyces cerevisiae/citología
8.
Cell Cycle ; 18(6-7): 639-651, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30836834

RESUMEN

Autophagy is a degradative pathway in which cytosolic material is enwrapped within double membrane vesicles, so-called autophagosomes, and delivered to lytic organelles. SNARE (Soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins are key to drive membrane fusion of the autophagosome and the lytic organelles, called lysosomes in higher eukaryotes or vacuoles in plants and yeast. Therefore, the identification of functional SNARE complexes is central for understanding fusion processes and their regulation. The SNARE proteins Syntaxin 17, SNAP29 and Vamp7/VAMP8 are responsible for the fusion of autophagosomes with lysosomes in higher eukaryotes. Recent studies reported that the R-SNARE Ykt6 is an additional SNARE protein involved in autophagosome-lytic organelle fusion in yeast, Drosophila, and mammals. These current findings point to an evolutionarily conserved role of Ykt6 in autophagosome-related fusion events. Here, we briefly summarize the principal mechanisms of autophagosome-lytic organelle fusion, with a special focus on Ykt6 to highlight some intrinsic features of this unusual SNARE protein.


Asunto(s)
Autofagosomas/metabolismo , Autofagosomas/fisiología , Fusión de Membrana/fisiología , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo , Animales , Eucariontes/metabolismo , Eucariontes/fisiología , Lisosomas/metabolismo , Lisosomas/fisiología
9.
Curr Biol ; 28(8): R512-R518, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29689234

RESUMEN

Macroautophagy is a conserved intracellular lysosomal degradative pathway, vital for the maintenance of cellular homeostasis. It is characterized by double-membrane vesicles called autophagosomes, which sequester the cytoplasmic material destined for lysosomal turnover. In a final step, autophagosomes fuse with lysosomes to release their cargo into the acidic and hydrolytic lumen of these organelles. In recent years, numerous new insights into this fusion event have been gained. Notably, many proteins implicated in autophagosome-lysosome fusion interact with members of the Atg8 protein family. Moreover, Atg8 proteins are described to have intrinsic membrane tethering and fusogenic properties themselves. Here, we summarize the current knowledge about the members of this intriguing protein family, which highlights them as possible hubs for the coordination of the final fusion stages of autophagy.


Asunto(s)
Autofagosomas/fisiología , Familia de las Proteínas 8 Relacionadas con la Autofagia/fisiología , Lisosomas/fisiología , Animales , Autofagosomas/metabolismo , Autofagia/fisiología , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Citosol/metabolismo , Humanos , Lisosomas/metabolismo , Fusión de Membrana/fisiología , Fagosomas/metabolismo
10.
Oncotarget ; 8(47): 81717-81718, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29137209
11.
Nat Commun ; 8(1): 295, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28821724

RESUMEN

The biogenesis of autophagosomes depends on the conjugation of Atg8-like proteins with phosphatidylethanolamine. Atg8 processing by the cysteine protease Atg4 is required for its covalent linkage to phosphatidylethanolamine, but it is also necessary for Atg8 deconjugation from this lipid to release it from membranes. How these two cleavage steps are coordinated is unknown. Here we show that phosphorylation by Atg1 inhibits Atg4 function, an event that appears to exclusively occur at the site of autophagosome biogenesis. These results are consistent with a model where the Atg8-phosphatidylethanolamine pool essential for autophagosome formation is protected at least in part by Atg4 phosphorylation by Atg1 while newly synthesized cytoplasmic Atg8 remains susceptible to constitutive Atg4 processing.The protease Atg4 mediates Atg8 lipidation, required for autophagosome biogenesis, but also triggers Atg8 release from the membranes, however is unclear how these steps are coordinated. Here the authors show that phosphorylation by Atg1 inhibits Atg4 at autophagosome formation sites.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Western Blotting , Microscopía Electrónica , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Fosfatidiletanolaminas/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
12.
Sci Rep ; 7(1): 5740, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28720894

RESUMEN

Coronaviruses (CoV) are enveloped viruses and rely on their nucleocapsid N protein to incorporate the positive-stranded genomic RNA into the virions. CoV N proteins form oligomers but the mechanism and relevance underlying their multimerization remain to be fully understood. Using in vitro pull-down experiments and density glycerol gradients, we found that at least 3 regions distributed over its entire length mediate the self-interaction of mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) N protein. The fact that these regions can bind reciprocally between themselves provides a possible molecular basis for N protein oligomerization. Interestingly, cytoplasmic N molecules of MHV-infected cells constitutively assemble into oligomers through a process that does not require binding to genomic RNA. Based on our data, we propose a model where constitutive N protein oligomerization allows the optimal loading of the genomic viral RNA into a ribonucleoprotein complex via the presentation of multiple viral RNA binding motifs.


Asunto(s)
Proteínas de la Nucleocápside/metabolismo , Multimerización de Proteína , Animales , Línea Celular , Proteínas de la Nucleocápside de Coronavirus , Ratones , Unión Proteica
13.
EMBO Rep ; 18(5): 765-780, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28330855

RESUMEN

Deconjugation of the Atg8/LC3 protein family members from phosphatidylethanolamine (PE) by Atg4 proteases is essential for autophagy progression, but how this event is regulated remains to be understood. Here, we show that yeast Atg4 is recruited onto autophagosomal membranes by direct binding to Atg8 via two evolutionarily conserved Atg8 recognition sites, a classical LC3-interacting region (LIR) at the C-terminus of the protein and a novel motif at the N-terminus. Although both sites are important for Atg4-Atg8 interaction in vivo, only the new N-terminal motif, close to the catalytic center, plays a key role in Atg4 recruitment to autophagosomal membranes and specific Atg8 deconjugation. We thus propose a model where Atg4 activity on autophagosomal membranes depends on the cooperative action of at least two sites within Atg4, in which one functions as a constitutive Atg8 binding module, while the other has a preference toward PE-bound Atg8.


Asunto(s)
Autofagosomas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Membranas/química , Membranas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Fagosomas/metabolismo , Fosfatidiletanolaminas/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
14.
Cell Stress Chaperones ; 22(1): 143-154, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27966061

RESUMEN

As a result of exposure to stress conditions, mutations, or defects during synthesis, cellular proteins are prone to misfold. To cope with such partially denatured proteins, cells mount a regulated transcriptional response involving the Hsf1 transcription factor, which drives the synthesis of molecular chaperones and other stress-relieving proteins. Here, we show that the fission yeast Schizosaccharomyces pombe orthologues of human BAG-1, Bag101, and Bag102, are Hsp70 co-chaperones that associate with 26S proteasomes. Only a subgroup of Hsp70-type chaperones, including Ssa1, Ssa2, and Sks2, binds Bag101 and Bag102 and key residues in the Hsp70 ATPase domains, required for interaction with Bag101 and Bag102, were identified. In humans, BAG-1 overexpression is typically observed in cancers. Overexpression of bag101 and bag102 in fission yeast leads to a strong growth defect caused by triggering Hsp70 to release and activate the Hsf1 transcription factor. Accordingly, the bag101-linked growth defect is alleviated in strains containing a reduced amount of Hsf1 but aggravated in hsp70 deletion strains. In conclusion, we propose that the fission yeast UBL/BAG proteins release Hsf1 from Hsp70, leading to constitutive Hsf1 activation and growth defects.


Asunto(s)
Factores de Transcripción del Choque Térmico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Reporteros , Factores de Transcripción del Choque Térmico/genética , Respuesta al Choque Térmico , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Análisis de Componente Principal , Complejo de la Endopetidasa Proteasomal/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
J Biol Chem ; 290(34): 21141-21153, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26152728

RESUMEN

A mutation, L166P, in the cytosolic protein, PARK7/DJ-1, causes protein misfolding and is linked to Parkinson disease. Here, we identify the fission yeast protein Sdj1 as the orthologue of DJ-1 and calculate by in silico saturation mutagenesis the effects of point mutants on its structural stability. We also map the degradation pathways for Sdj1-L169P, the fission yeast orthologue of the disease-causing DJ-1 L166P protein. Sdj1-L169P forms inclusions, which are enriched for the Hsp104 disaggregase. Hsp104 and Hsp70-type chaperones are required for efficient degradation of Sdj1-L169P. This also depends on the ribosome-associated E3 ligase Ltn1 and its co-factor Rqc1. Although Hsp104 is absolutely required for proteasomal degradation of Sdj1-L169P aggregates, the degradation of already aggregated Sdj1-L169P occurs independently of Ltn1 and Rqc1. Thus, our data point to soluble Sdj1-L169P being targeted early by Ltn1 and Rqc1. The fraction of Sdj1-L169P that escapes this first inspection then forms aggregates that are subsequently cleared via an Hsp104- and proteasome-dependent pathway.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Coenzimas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Oncogénicas/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Coenzimas/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Proteína Desglicasa DJ-1 , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteolisis , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Ubiquitina-Proteína Ligasas/genética
16.
Mol Cell ; 56(3): 453-461, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25306921

RESUMEN

The ubiquitin-proteasome system is the major pathway for protein degradation in eukaryotic cells. Proteins to be degraded are conjugated to ubiquitin chains that act as recognition signals for the 26S proteasome. The proteasome subunits Rpn10 and Rpn13 are known to bind ubiquitin, but genetic and biochemical data suggest the existence of at least one other substrate receptor. Here, we show that the phylogenetically conserved proteasome subunit Dss1 (Sem1) binds ubiquitin chains linked by K63 and K48. Atomic resolution data show that Dss1 is disordered and binds ubiquitin by binding sites characterized by acidic and hydrophobic residues. The complementary binding region in ubiquitin is composed of a hydrophobic patch formed by I13, I44, and L69 flanked by two basic regions. Mutations in the ubiquitin-binding site of Dss1 cause growth defects and accumulation of ubiquitylated proteins.


Asunto(s)
Proteínas Portadoras/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Ubiquitina/metabolismo , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión al ARN , Proteínas de Schizosaccharomyces pombe/química , Ubiquitina/química
17.
BMC Cell Biol ; 15: 31, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25078495

RESUMEN

BACKGROUND: In mammalian cells, ASPL is involved in insulin-stimulated redistribution of the glucose transporter GLUT4 and assembly of the Golgi apparatus. Its putative yeast orthologue, Ubx4, is important for proteasome localization, endoplasmic reticulum-associated protein degradation (ERAD), and UV-induced degradation of RNA polymerase. RESULTS: Here, we show that ASPL is a cofactor of the hexameric ATPase complex, known as p97 or VCP in mammals and Cdc48 in yeast. In addition, ASPL interacts in vitro with NSF, another hexameric ATPase complex. ASPL localizes to the ER membrane. The central area in ASPL, containing both a SHP box and a UBX domain, is required for binding to the p97 N-domain. Knock-down of ASPL does not impair degradation of misfolded secretory proteins via the ERAD pathway. Deletion of UBX4 in yeast causes cycloheximide sensitivity, while ubx4 cdc48-3 double mutations cause proteasome mislocalization. ASPL alleviates these defects, but not the impaired ERAD. CONCLUSIONS: In conclusion, ASPL and Ubx4 are homologous proteins with only partially overlapping functions. Both interact with p97/Cdc48, but while Ubx4 is important for ERAD, ASPL appears not to share this function.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/análisis , Proteínas Portadoras/análisis , Proteínas Portadoras/genética , Eliminación de Gen , Técnicas de Inactivación de Genes , Humanos , Péptidos y Proteínas de Señalización Intracelular , Mutación , Proteínas Nucleares/análisis , Proteínas de Fusión Oncogénica/análisis , Proteínas de Fusión Oncogénica/genética , Complejo de la Endopetidasa Proteasomal/análisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética
18.
PLoS Genet ; 10(1): e1004140, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24497846

RESUMEN

Cells are regularly exposed to stress conditions that may lead to protein misfolding. To cope with this challenge, molecular chaperones selectively target structurally perturbed proteins for degradation via the ubiquitin-proteasome pathway. In mammals the co-chaperone BAG-1 plays an important role in this system. BAG-1 has two orthologues, Bag101 and Bag102, in the fission yeast Schizosaccharomyces pombe. We show that both Bag101 and Bag102 interact with 26S proteasomes and Hsp70. By epistasis mapping we identify a mutant in the conserved kinetochore component Spc7 (Spc105/Blinkin) as a target for a quality control system that also involves, Hsp70, Bag102, the 26S proteasome, Ubc4 and the ubiquitin-ligases Ubr11 and San1. Accordingly, chromosome missegregation of spc7 mutant strains is alleviated by mutation of components in this pathway. In addition, we isolated a dominant negative version of the deubiquitylating enzyme, Ubp3, as a suppressor of the spc7-23 phenotype, suggesting that the proteasome-associated Ubp3 is required for this degradation system. Finally, our data suggest that the identified pathway is also involved in quality control of other kinetochore components and therefore likely to be a common degradation mechanism to ensure nuclear protein homeostasis and genome integrity.


Asunto(s)
Inestabilidad Genómica , Cinetocoros , Chaperonas Moleculares/genética , Proteolisis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética
19.
FEBS J ; 279(4): 532-42, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22177318

RESUMEN

The accumulation of misfolded proteins presents a considerable threat to the health of individual cells and has been linked to severe diseases, including neurodegenerative disorders. Considering that, in nature, cells often are exposed to stress conditions that may lead to aberrant protein conformational changes, it becomes clear that they must have an efficient quality control apparatus to refold or destroy misfolded proteins. In general, cells rely on molecular chaperones to seize and refold misfolded proteins. If the native state is unattainable, misfolded proteins are targeted for degradation via the ubiquitin-proteasome system. The specificity of this proteolysis is generally provided by E3 ubiquitin-protein ligases, hundreds of which are encoded in the human genome. However, rather than binding the misfolded proteins directly, most E3s depend on molecular chaperones to recognize the misfolded protein substrate. Thus, by delegating substrate recognition to chaperones, E3s deftly utilize a pre-existing cellular system for selectively targeting misfolded proteins. Here, we review recent advances in understanding the interplay between molecular chaperones and the ubiquitin-proteasome system in the cytosol, nucleus, endoplasmic reticulum and mitochondria.


Asunto(s)
Chaperonas Moleculares/metabolismo , Proteínas/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Modelos Biológicos , Pliegue de Proteína , Transporte de Proteínas , Proteínas/química
20.
FEBS J ; 279(4): 525, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22177382

RESUMEN

Here a brief introduction to the series is given, which highlights concepts, recent findings and current challenges in understanding chaperone function and quality control of proteins.


Asunto(s)
Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteínas/química , Proteínas/metabolismo , Animales , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA