Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Prog Mol Biol Transl Sci ; 207: 355-415, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38942544

RESUMEN

Female cancers, which include breast and gynaecological cancers, represent a significant global health burden for women. Despite advancements in research pertinent to unearthing crucial pathological characteristics of these cancers, challenges persist in discovering potential therapeutic strategies. This is further exacerbated by economic burdens associated with de novo drug discovery and clinical intricacies such as development of drug resistance and metastasis. Drug repurposing, an innovative approach leveraging existing FDA-approved drugs for new indications, presents a promising avenue to expedite therapeutic development. Computational techniques, including virtual screening and analysis of drug-target-disease relationships, enable the identification of potential candidate drugs. Integration of diverse data types, such as omics and clinical information, enhances the precision and efficacy of drug repurposing strategies. Experimental approaches, including high-throughput screening assays, in vitro, and in vivo models, complement computational methods, facilitating the validation of repurposed drugs. This review highlights various target mining strategies based on analysis of differential gene expression, weighted gene co-expression, protein-protein interaction network, and host-pathogen interaction, among others. To unearth drug candidates, the technicalities of leveraging information from databases such as DrugBank, STITCH, LINCS, and ChEMBL, among others are discussed. Further in silico validation techniques encompassing molecular docking, pharmacophore modelling, molecular dynamic simulations, and ADMET analysis are elaborated. Overall, this review delves into the exploration of individual case studies to offer a wide perspective of the ever-evolving field of drug repurposing, emphasizing the multifaceted approaches and methodologies employed for the same to confront female cancers.


Asunto(s)
Reposicionamiento de Medicamentos , Humanos , Femenino , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología
2.
Cell Chem Biol ; 31(4): 712-728.e9, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38029756

RESUMEN

There is a need to discover and develop non-toxic antibiotics that are effective against metabolically dormant bacteria, which underlie chronic infections and promote antibiotic resistance. Traditional antibiotic discovery has historically favored compounds effective against actively metabolizing cells, a property that is not predictive of efficacy in metabolically inactive contexts. Here, we combine a stationary-phase screening method with deep learning-powered virtual screens and toxicity filtering to discover compounds with lethality against metabolically dormant bacteria and favorable toxicity profiles. The most potent and structurally distinct compound without any obvious mechanistic liability was semapimod, an anti-inflammatory drug effective against stationary-phase E. coli and A. baumannii. Integrating microbiological assays, biochemical measurements, and single-cell microscopy, we show that semapimod selectively disrupts and permeabilizes the bacterial outer membrane by binding lipopolysaccharide. This work illustrates the value of harnessing non-traditional screening methods and deep learning models to identify non-toxic antibacterial compounds that are effective in infection-relevant contexts.

3.
Nature ; 626(7997): 177-185, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38123686

RESUMEN

The discovery of novel structural classes of antibiotics is urgently needed to address the ongoing antibiotic resistance crisis1-9. Deep learning approaches have aided in exploring chemical spaces1,10-15; these typically use black box models and do not provide chemical insights. Here we reasoned that the chemical substructures associated with antibiotic activity learned by neural network models can be identified and used to predict structural classes of antibiotics. We tested this hypothesis by developing an explainable, substructure-based approach for the efficient, deep learning-guided exploration of chemical spaces. We determined the antibiotic activities and human cell cytotoxicity profiles of 39,312 compounds and applied ensembles of graph neural networks to predict antibiotic activity and cytotoxicity for 12,076,365 compounds. Using explainable graph algorithms, we identified substructure-based rationales for compounds with high predicted antibiotic activity and low predicted cytotoxicity. We empirically tested 283 compounds and found that compounds exhibiting antibiotic activity against Staphylococcus aureus were enriched in putative structural classes arising from rationales. Of these structural classes of compounds, one is selective against methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci, evades substantial resistance, and reduces bacterial titres in mouse models of MRSA skin and systemic thigh infection. Our approach enables the deep learning-guided discovery of structural classes of antibiotics and demonstrates that machine learning models in drug discovery can be explainable, providing insights into the chemical substructures that underlie selective antibiotic activity.


Asunto(s)
Antibacterianos , Aprendizaje Profundo , Descubrimiento de Drogas , Animales , Humanos , Ratones , Antibacterianos/química , Antibacterianos/clasificación , Antibacterianos/farmacología , Antibacterianos/toxicidad , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Redes Neurales de la Computación , Algoritmos , Enterococos Resistentes a la Vancomicina/efectos de los fármacos , Modelos Animales de Enfermedad , Piel/efectos de los fármacos , Piel/microbiología , Descubrimiento de Drogas/métodos , Descubrimiento de Drogas/tendencias
4.
Nat Microbiol ; 8(6): 1004-1005, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37268773
5.
PLoS Pathog ; 18(11): e1010955, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36395346

RESUMEN

Cyst-forming Apicomplexa (CFA) of the Sarcocystidae have a ubiquitous presence as pathogens of humans and farm animals transmitted through the food chain between hosts with few notable exceptions. The defining hallmark of this family of obligate intracellular protists consists of their ability to remain for very long periods as infectious tissue cysts in chronically infected intermediate hosts. Nevertheless, each closely related species has evolved unique strategies to maintain distinct reservoirs on global scales and ensuring efficient transmission to definitive hosts as well as between intermediate hosts. Here, we present an in-depth comparative mRNA expression analysis of the tachyzoite and bradyzoite stages of Besnoitia besnoiti strain Lisbon14 isolated from an infected farm animal based on its annotated genome sequence. The B. besnoiti genome is highly syntenic with that of other CFA and also retains the capacity to encode a large majority of known and inferred factors essential for completing a sexual cycle in a yet unknown definitive host. This work introduces Besnoitia besnoiti as a new model for comparative biology of coccidian tissue cysts which can be readily obtained in high purity. This model provides a framework for addressing fundamental questions about the evolution of tissue cysts and the biology of this pharmacologically intractable infectious parasite stage.


Asunto(s)
Besnoitia , Estadios del Ciclo de Vida , Animales , Humanos , Estadios del Ciclo de Vida/genética , Cadena Alimentaria , Expresión Génica
6.
Mol Syst Biol ; 18(9): e11081, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36065847

RESUMEN

Efficient identification of drug mechanisms of action remains a challenge. Computational docking approaches have been widely used to predict drug binding targets; yet, such approaches depend on existing protein structures, and accurate structural predictions have only recently become available from AlphaFold2. Here, we combine AlphaFold2 with molecular docking simulations to predict protein-ligand interactions between 296 proteins spanning Escherichia coli's essential proteome, and 218 active antibacterial compounds and 100 inactive compounds, respectively, pointing to widespread compound and protein promiscuity. We benchmark model performance by measuring enzymatic activity for 12 essential proteins treated with each antibacterial compound. We confirm extensive promiscuity, but find that the average area under the receiver operating characteristic curve (auROC) is 0.48, indicating weak model performance. We demonstrate that rescoring of docking poses using machine learning-based approaches improves model performance, resulting in average auROCs as large as 0.63, and that ensembles of rescoring functions improve prediction accuracy and the ratio of true-positive rate to false-positive rate. This work indicates that advances in modeling protein-ligand interactions, particularly using machine learning-based approaches, are needed to better harness AlphaFold2 for drug discovery.


Asunto(s)
Antibacterianos , Benchmarking , Antibacterianos/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Proteínas/metabolismo
7.
Cell Rep ; 40(7): 111224, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977499

RESUMEN

Toxoplasma gondii possesses sphingolipid synthesis capabilities and is equipped to salvage lipids from its host. The contribution of these two routes of lipid acquisition during parasite development is unclear. As part of a complete ceramide synthesis pathway, T. gondii expresses two serine palmitoyltransferases (TgSPT1 and TgSPT2) and a dihydroceramide desaturase. After deletion of these genes, we determine their role in parasite development in vitro and in vivo during acute and chronic infection. Detailed phenotyping through lipidomic approaches reveal a perturbed sphingolipidome in these mutants, characterized by a drastic reduction in ceramides and ceramide phosphoethanolamines but not sphingomyelins. Critically, parasites lacking TgSPT1 display decreased fitness, marked by reduced growth rates and a selective defect in rhoptry discharge in the form of secretory vesicles, causing an invasion defect. Disruption of de novo ceramide synthesis modestly affects acute infection in vivo but severely reduces cyst burden in the brain of chronically infected mice.


Asunto(s)
Toxoplasma , Animales , Ceramidas/metabolismo , Ratones , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo
8.
J Cell Sci ; 135(15)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35621049

RESUMEN

Acetyl-CoA participates in post-translational modification of proteins and in central carbon and lipid metabolism in several cell compartments. In mammals, acetyl-CoA transporter 1 (AT1, also known as SLC33A1) facilitates the flux of cytosolic acetyl-CoA into the endoplasmic reticulum (ER), enabling the acetylation of proteins of the secretory pathway, in concert with the activity of dedicated acetyltransferases such as NAT8. However, the involvement of the ER acetyl-CoA pool in acetylation of ER-transiting proteins in Apicomplexa is unknown. Here, we identified homologs of AT1 and NAT8 in Toxoplasma gondii and Plasmodium berghei parasites. Proteome-wide analyses revealed widespread N-terminal acetylation of secreted proteins in both species. Such extensive acetylation of N-terminally processed proteins has not been observed previously in any other organism. Deletion of AT1 homologs in both T. gondii and P. berghei resulted in considerable reductions in parasite fitness. In P. berghei, AT1 was found to be important for growth of asexual blood stages, production of female gametocytes and male gametocytogenesis, implying its requirement for parasite transmission. In the absence of AT1, lysine acetylation and N-terminal acetylation in T. gondii remained globally unaltered, suggesting an uncoupling between the role of AT1 in development and active acetylation occurring along the secretory pathway.


Asunto(s)
Parásitos , Toxoplasma , Acetilcoenzima A/metabolismo , Acetilación , Animales , Retículo Endoplásmico/metabolismo , Femenino , Masculino , Mamíferos/metabolismo , Parásitos/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
9.
PLoS Pathog ; 18(3): e1010438, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35325010

RESUMEN

Regulated microneme secretion governs motility, host cell invasion and egress in the obligate intracellular apicomplexans. Intracellular calcium oscillations and phospholipid dynamics critically regulate microneme exocytosis. Despite its importance for the lytic cycle of these parasites, molecular mechanistic details about exocytosis are still missing. Some members of the P4-ATPases act as flippases, changing the phospholipid distribution by translocation from the outer to the inner leaflet of the membrane. Here, the localization and function of the repertoire of P4-ATPases was investigated across the lytic cycle of Toxoplasma gondii. Of relevance, ATP2B and the non-catalytic subunit cell division control protein 50.4 (CDC50.4) form a stable heterocomplex at the parasite plasma membrane, essential for microneme exocytosis. This complex is responsible for flipping phosphatidylserine, which presumably acts as a lipid mediator for organelle fusion with the plasma membrane. Overall, this study points toward the importance of phosphatidylserine asymmetric distribution at the plasma membrane for microneme exocytosis.


Asunto(s)
Toxoplasma , Membrana Celular/metabolismo , Exocitosis , Micronema , Fosfatidilserinas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo
10.
Nat Commun ; 13(1): 345, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039477

RESUMEN

Coenzyme A (CoA) is an essential molecule acting in metabolism, post-translational modification, and regulation of gene expression. While all organisms synthesize CoA, many, including humans, are unable to produce its precursor, pantothenate. Intriguingly, like most plants, fungi and bacteria, parasites of the coccidian subgroup of Apicomplexa, including the human pathogen Toxoplasma gondii, possess all the enzymes required for de novo synthesis of pantothenate. Here, the importance of CoA and pantothenate biosynthesis for the acute and chronic stages of T. gondii infection is dissected through genetic, biochemical and metabolomic approaches, revealing that CoA synthesis is essential for T. gondii tachyzoites, due to the parasite's inability to salvage CoA or intermediates of the pathway. In contrast, pantothenate synthesis is only partially active in T. gondii tachyzoites, making the parasite reliant on its uptake. However, pantothenate synthesis is crucial for the establishment of chronic infection, offering a promising target for intervention against the persistent stage of T. gondii.


Asunto(s)
Ácido Pantoténico/biosíntesis , Parásitos/patogenicidad , Infección Persistente/parasitología , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología , Animales , Vías Biosintéticas , Diferenciación Celular , Membrana Celular/metabolismo , Coenzima A/biosíntesis , Coenzima A/química , Coenzima A/metabolismo , Citoplasma/metabolismo , Femenino , Estadios del Ciclo de Vida , Ratones , Ácido Pantoténico/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Multimerización de Proteína , Toxoplasma/crecimiento & desarrollo
11.
PLoS Pathog ; 17(12): e1010124, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34969059

RESUMEN

The Apicomplexa phylum comprises thousands of distinct intracellular parasite species, including coccidians, haemosporidians, piroplasms, and cryptosporidia. These parasites are characterized by complex and divergent life cycles occupying a variety of host niches. Consequently, they exhibit distinct adaptations to the differences in nutritional availabilities, either relying on biosynthetic pathways or by salvaging metabolites from their host. Pantothenate (Pan, vitamin B5) is the precursor for the synthesis of an essential cofactor, coenzyme A (CoA), but among the apicomplexans, only the coccidian subgroup has the ability to synthesize Pan. While the pathway to synthesize CoA from Pan is largely conserved across all branches of life, there are differences in the redundancy of enzymes and possible alternative pathways to generate CoA from Pan. Impeding the scavenge of Pan and synthesis of Pan and CoA have been long recognized as potential targets for antimicrobial drug development, but in order to fully exploit these critical pathways, it is important to understand such differences. Recently, a potent class of pantothenamides (PanAms), Pan analogs, which target CoA-utilizing enzymes, has entered antimalarial preclinical development. The potential of PanAms to target multiple downstream pathways make them a promising compound class as broad antiparasitic drugs against other apicomplexans. In this review, we summarize the recent advances in understanding the Pan and CoA biosynthesis pathways, and the suitability of these pathways as drug targets in Apicomplexa, with a particular focus on the cyst-forming coccidian, Toxoplasma gondii, and the haemosporidian, Plasmodium falciparum.


Asunto(s)
Antiparasitarios/farmacología , Apicomplexa/metabolismo , Apicomplexa/parasitología , Coenzima A/biosíntesis , Ácido Pantoténico/biosíntesis , Infecciones por Protozoos , Animales , Humanos
12.
mBio ; 12(5): e0205721, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34607461

RESUMEN

Toxoplasma gondii extracellular signal-regulated kinase 7 (ERK7) is known to contribute to the integrity of the apical complex and to participate in the final step of conoid biogenesis. In the absence of ERK7, mature parasites lose their conoid complex and are unable to glide, invade, or egress from host cells. In contrast to a previous report, we show here that the depletion of ERK7 phenocopies the depletion of the apical cap protein AC9 or AC10. The absence of ERK7 leads to the loss of the apical polar ring (APR), the disorganization of the basket of subpellicular microtubules (SPMTs), and a severe impairment in microneme secretion. Ultrastructure expansion microscopy (U-ExM), coupled to N-hydroxysuccinimide ester (NHS-ester) staining on intracellular parasites, offers an unprecedented level of resolution and highlights the disorganization of the rhoptries as well as the dilated plasma membrane at the apical pole in the absence of ERK7. Comparative proteomics analysis of wild-type and ERK7-depleted parasites confirmed the disappearance of known apical complex proteins, including markers of the apical polar ring and a new apical cap named AC11. Concomitantly, the absence of ERK7 led to an accumulation of microneme proteins, resulting from the defect in the exocytosis of the organelles. AC9-depleted parasites were included as controls and exhibited an increase in inner membrane complex proteins, with two new proteins assigned to this compartment, namely, IMC33 and IMC34. IMPORTANCE The conoid is an enigmatic, dynamic organelle positioned at the apical tip of the coccidian subgroup of the Apicomplexa, close to the apical polar ring (APR) from which the subpellicular microtubules (SPMTs) emerge and through which the secretory organelles (micronemes and rhoptries) reach the plasma membrane for exocytosis. In Toxoplasma gondii, the conoid protrudes concomitantly with microneme secretion, during egress, motility, and invasion. The conditional depletion of the apical cap structural protein AC9 or AC10 leads to a disorganization of SPMTs as well as the loss of the APR and conoid, resulting in a microneme secretion defect and a block in motility, invasion, and egress. We show here that the depletion of the kinase ERK7 phenocopies AC9 and AC10 mutants. The combination of ultrastructure expansion microscopy and NHS-ester staining revealed that ERK7-depleted parasites exhibit a dilated apical plasma membrane and an altered positioning of the rhoptries, while electron microscopy images unambiguously highlight the loss of the APR.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Orgánulos/enzimología , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Exocitosis , Quinasas MAP Reguladas por Señal Extracelular/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Orgánulos/genética , Proteínas Protozoarias/genética , Toxoplasma/genética
13.
Nat Commun ; 12(1): 5650, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561442

RESUMEN

Protein serine/threonine/tyrosine (S/T/Y) phosphorylation is an essential and frequent post-translational modification in eukaryotes, but historically has been considered less prevalent in bacteria because fewer proteins were found to be phosphorylated and most proteins were modified to a lower degree. Recent proteomics studies greatly expanded the phosphoproteome of Escherichia coli to more than 2000 phosphorylation sites (phosphosites), yet mechanisms of action were proposed for only six phosphosites and fitness effects were described for 38 phosphosites upon perturbation. By systematically characterizing functional relevance of S/T/Y phosphorylation in E. coli metabolism, we found 44 of the 52 mutated phosphosites to be functional based on growth phenotypes and intracellular metabolome profiles. By effectively doubling the number of known functional phosphosites, we provide evidence that protein phosphorylation is a major regulation process in bacterial metabolism. Combining in vitro and in vivo experiments, we demonstrate how single phosphosites modulate enzymatic activity and regulate metabolic fluxes in glycolysis, methylglyoxal bypass, acetate metabolism and the split between pentose phosphate and Entner-Doudoroff pathways through mechanisms that include shielding the substrate binding site, limiting structural dynamics, and disrupting interactions relevant for activity in vivo.


Asunto(s)
Enzimas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Procesamiento Proteico-Postraduccional , Sitios de Unión/genética , Enzimas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Espectrometría de Masas/métodos , Metabolómica/métodos , Mutación , Fosforilación , Proteoma/metabolismo , Proteómica/métodos , Serina/genética , Serina/metabolismo , Treonina/genética , Treonina/metabolismo , Tirosina/genética , Tirosina/metabolismo
14.
Metabolites ; 11(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498308

RESUMEN

Obligate intracellular pathogens have coevolved with their host, leading to clever strategies to access nutrients, to combat the host's immune response, and to establish a safe niche for intracellular replication. The host, on the other hand, has also developed ways to restrict the replication of invaders by limiting access to nutrients required for pathogen survival. In this review, we describe the recent advancements in both computational methods and high-throughput -omics techniques that have been used to study and interrogate metabolic functions in the context of intracellular parasitism. Specifically, we cover the current knowledge on the presence of amino acid biosynthesis and uptake within the Apicomplexa phylum, focusing on human-infecting pathogens: Toxoplasma gondii and Plasmodium falciparum. Given the complex multi-host lifecycle of these pathogens, we hypothesize that amino acids are made, rather than acquired, depending on the host niche. We summarize the stage specificities of enzymes revealed through transcriptomics data, the relevance of amino acids for parasite pathogenesis in vivo, and the role of their transporters. Targeting one or more of these pathways may lead to a deeper understanding of the specific contributions of biosynthesis versus acquisition of amino acids and to design better intervention strategies against the apicomplexan parasites.

15.
World Dev ; 134: 105044, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32834371

RESUMEN

COVID-19 accentuates the case for a global, rather than an international, development paradigm. The novel disease is a prime example of a development challenge for all countries, through the failure of public health as a global public good. The COVID-19 pandemic has highlighted the falsity of any assumption that the global North has all the expertise and solutions to tackle global challenges, and has further highlighted the need for multi-directional learning and transformation in all countries towards a more sustainable and equitable world. We illustrate our argument for a global development paradigm by examining the implications of the COVID-19 pandemic across four themes or 'vignettes': global value chains, digitalisation, debt, and climate change. We conclude that development studies must adapt to a very different context from when the field emerged in the mid-20th century.

16.
Adv Exp Med Biol ; 1239: 331-354, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32451865

RESUMEN

The phylum of Apicomplexa groups obligate intracellular parasites that exhibit unique classes of unconventional myosin motors. These parasites also encode a limited repertoire of actins, actin-like proteins, actin-binding proteins and nucleators of filamentous actin (F-actin) that display atypical properties. In the last decade, significant progress has been made to visualize F-actin and to unravel the functional contribution of actomyosin systems in the biology of Toxoplasma and Plasmodium, the most genetically-tractable members of the phylum. In addition to assigning specific roles to each myosin, recent biochemical and structural studies have begun to uncover mechanistic insights into myosin function at the atomic level. In several instances, the myosin light chains associated with the myosin heavy chains have been identified, helping to understand the composition of the motor complexes and their mode of regulation. Moreover, the considerable advance in proteomic methodologies and especially in assignment of posttranslational modifications is offering a new dimension to our understanding of the regulation of actin dynamics and myosin function. Remarkably, the actomyosin system contributes to three major processes in Toxoplasma gondii: (i) organelle trafficking, positioning and inheritance, (ii) basal pole constriction and intravacuolar cell-cell communication and (iii) motility, invasion, and egress from infected cells. In this chapter, we summarize how the actomyosin system harnesses these key events to ensure successful completion of the parasite life cycle.


Asunto(s)
Actomiosina/metabolismo , Plasmodium/metabolismo , Toxoplasma/metabolismo , Actinas , Animales , Proteómica , Proteínas Protozoarias/metabolismo
18.
Cell Host Microbe ; 27(2): 290-306.e11, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31991093

RESUMEN

To survive and proliferate in diverse host environments with varying nutrient availability, the obligate intracellular parasite Toxoplasma gondii reprograms its metabolism. We have generated and curated a genome-scale metabolic model (iTgo) for the fast-replicating tachyzoite stage, harmonized with experimentally observed phenotypes. To validate the importance of four metabolic pathways predicted by the model, we have performed in-depth in vitro and in vivo phenotyping of mutant parasites including targeted metabolomics and CRISPR-Cas9 fitness screening of all known metabolic genes. This led to unexpected insights into the remarkable flexibility of the parasite, addressing the dependency on biosynthesis or salvage of fatty acids (FAs), purine nucleotides (AMP and GMP), a vitamin (pyridoxal-5P), and a cofactor (heme) in both the acute and latent stages of infection. Taken together, our experimentally validated metabolic network leads to a deeper understanding of the parasite's biology, opening avenues for the development of therapeutic intervention against apicomplexans.


Asunto(s)
Ácidos Grasos/metabolismo , Hemo/metabolismo , Toxoplasma/metabolismo , Vitamina B 6/metabolismo , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Biología Computacional , Desarrollo de Medicamentos/tendencias , Genómica , Estadios del Ciclo de Vida/fisiología , Redes y Vías Metabólicas , Metabolómica , Ratones , Fenotipo , Toxoplasma/genética
19.
J Biol Chem ; 295(3): 701-714, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31767680

RESUMEN

The Apicomplexa phylum comprises diverse parasitic organisms that have evolved from a free-living ancestor. These obligate intracellular parasites exhibit versatile metabolic capabilities reflecting their capacity to survive and grow in different hosts and varying niches. Determined by nutrient availability, they either use their biosynthesis machineries or largely depend on their host for metabolite acquisition. Because vitamins cannot be synthesized by the mammalian host, the enzymes required for their synthesis in apicomplexan parasites represent a large repertoire of potential therapeutic targets. Here, we review recent advances in metabolic reconstruction and functional studies coupled to metabolomics that unravel the interplay between biosynthesis and salvage of vitamins and cofactors in apicomplexans. A particular emphasis is placed on Toxoplasma gondii, during both its acute and latent stages of infection.


Asunto(s)
Apicomplexa/metabolismo , Coenzimas/metabolismo , Toxoplasmosis/metabolismo , Vitaminas/metabolismo , Apicomplexa/genética , Coenzimas/genética , Interacciones Huésped-Parásitos/genética , Humanos , Redes y Vías Metabólicas/genética , Biosíntesis de Proteínas/genética , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología , Vitaminas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...