Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Labelled Comp Radiopharm ; 64(5): 198-208, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33314295

RESUMEN

New 18 F-labeled nonvolatile aldehyde prosthetic groups derived from [18 F]F-Py-TFP and spirocyclic iodonium (III)ylide precursors for late stage 18 F-labeling were developed. These precursors were characterized, 18 F-labeled, and compared in reactivity for oxime coupling. Oxime coupling was performed on an amino-oxy modified inhibited factor VII (FVIIai-ONH2 ) in low concentration to prove the applicability of the proposed method.


Asunto(s)
Oximas
2.
Bioconjug Chem ; 30(3): 775-784, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30676028

RESUMEN

A nonvolatile fluorine-18 aldehyde prosthetic group was developed from [18F]SFB, and used for site-specific labeling of active site inhibited factor VII (FVIIai). FVIIai has a high affinity for tissue factor (TF), a transmembrane protein involved in angiogenesis, proliferation, cell migration, and survival of cancer cells. A hydroxylamine N-glycan modified FVIIai (FVIIai-ONH2) was used for oxime coupling with the aldehyde [18F]2 under mild and optimized conditions in an isolated RCY of 4.7 ± 0.9%, and a synthesis time of 267 ± 5 min (from EOB). Retained binding and specificity of the resulting [18F]FVIIai to TF was shown in vitro. TF-expression imaging capability was evaluated by in vivo PET/CT imaging in a pancreatic human xenograft cancer mouse model. The conjugate showed exceptional stability in plasma (>95% at 4 h) and a binding fraction of 90%. In vivo PET/CT imaging showed a mean tumor uptake of 3.8 ± 0.2% ID/g at 4 h post-injection, a comparable uptake in liver and kidneys, and low uptake in normal tissues. In conclusion, FVIIai was labeled with fluorine-18 at the N-glycan chain without affecting TF binding. In vitro specificity and a good in vivo imaging contrast at 4 h postinjection was demonstrated.


Asunto(s)
Aldehídos/química , Factor VII/antagonistas & inhibidores , Radioisótopos de Flúor/química , Oximas/química , Animales , Sitios de Unión , Dominio Catalítico , Ciclización , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tromboplastina/metabolismo , Distribución Tisular , Agua
3.
Bioconjug Chem ; 29(1): 117-125, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29206443

RESUMEN

A method for site-specific radiolabeling of the serine protease active site inhibited factor seven (FVIIai) with 64Cu has been applied using a biorthogonal click reaction. FVIIai binds to tissue factor (TF), a trans-membrane protein involved in hemostasis, angiogenesis, proliferation, cell migration, and survival of cancer cells. First a single azide moiety was introduced in the active site of this 50 kDa protease. Then a NOTA moiety was introduced via a strain promoted azide-alkyne reaction and the corresponding conjugate was labeled with 64Cu. Binding to TF and the stability was evaluated in vitro. TF targeting capability of the radiolabeled conjugate was tested in vivo by positron emission tomography (PET) imaging in pancreatic human xenograft cancer mouse models with various TF expressions. The conjugate showed good stability (>91% at 16 h), an immunoreactivity of 93.5%, and a mean tumor uptake of 2.1 ± 0.2%ID/g at 15 h post injection. In conclusion, FVIIai was radiolabeled with 64Cu in single well-defined position of the protein. This method can be utilized to prepare conjugates from serine proteases with the label at a specific position.


Asunto(s)
Azidas/química , Química Clic/métodos , Radioisótopos de Cobre/química , Factor VII/química , Neoplasias Pancreáticas/diagnóstico por imagen , Serina Proteasas/química , Tromboplastina/análisis , Animales , Dominio Catalítico , Línea Celular Tumoral , Factor VII/farmacología , Femenino , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos con 1 Anillo , Humanos , Marcaje Isotópico/métodos , Ratones , Ratones Desnudos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Serina Proteasas/farmacología
4.
Eur J Pharm Sci ; 87: 58-68, 2016 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-26517963

RESUMEN

The biologic fate of the [(3)H]PEG-moiety incorporated into N8-GP was evaluated based on single i.v. bolus doses to rats. Furthermore, the 40kDa [(3)H]PEG-moiety was given separately to rats by single i.v. bolus doses, to investigate if the pharmacokinetics were dose-dependent. For both compounds, plasma pharmacokinetics, distribution and excretion pathways were investigated, based on total radioactivity measurements ([(3)H]N8-GP: 0.17-4.1mg/kg;~1300-30,000U/kg, PEG load of ~0.03-0.7mg/kg); ([(3)H]PEG: 0.6, 1, 12, 100 and 200mg/kg). The plasma concentration of the intact N8-GP conjugate was also measured by ELISA. After single i.v. administration to rats, both [(3)H]N8-GP and [(3)H]PEG were shown to be widely distributed, mainly in highly vascularized tissues, with the lowest levels of radioactivity found in the CNS. Though a slow elimination of radioactivity was observed over the 12-week study period, approximately half of the radioactive dose of either compound was removed from the body 1week post-dose. The radioactivity was eliminated mainly via the kidney into urine but also via the liver into feces, with a larger fraction found in the feces for [(3)H]N8-GP. Elimination of the 40kDa PEG-moiety was shown to be dose-dependent with faster elimination at lower dose levels. The clinical dose of N8-GP provides a substantially lower PEG exposure (50-75U/kg; PEG load of <0.002mg/kg) when compared to the PEG doses investigated in this paper (0.03-200mg/kg). This may imply an even faster clearance of the PEG-moiety after N8-GP administration of clinically relevant doses.


Asunto(s)
Factor VIII/farmacocinética , Polietilenglicoles/farmacocinética , Animales , Relación Dosis-Respuesta a Droga , Factor VIII/administración & dosificación , Semivida , Masculino , Polietilenglicoles/administración & dosificación , Trazadores Radiactivos , Ratas , Distribución Tisular
5.
J Labelled Comp Radiopharm ; 58(5): 196-201, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25820758

RESUMEN

Activated factor VII blocked in the active site with Phe-Phe-Arg-chloromethyl ketone (active site inhibited factor VII (ASIS)) is a 50-kDa protein that binds with high affinity to its receptor, tissue factor (TF). TF is a transmembrane glycoprotein that plays an important role in, for example, thrombosis, metastasis, tumor growth, and tumor angiogenesis. The aim of this study was to develop an (18)F-labeled ASIS derivative to assess TF expression in tumors. Active site inhibited factor VII was labeled using N-succinimidyl-4-[(18)F]fluorobenzoate, and the [(18)F]ASIS was purified on a PD-10 desalting column. The radiochemical yield was 25 ± 6%, the radiochemical purity was >97%, and the pseudospecific radioactivity was 35 ± 9 GBq/µmol. The binding efficacy was evaluated in pull-down experiments, which monitored the binding of unlabeled ASIS and [(18)F]ASIS to TF and to a specific anti-factor VII antibody (F1A2-mAb). No significant difference in binding efficacy between [(18)F]ASIS and ASIS could be detected. Furthermore, [(18)F]ASIS was relatively stable in vitro and in vivo in mice. In conclusion, [(18)F]ASIS has for the first time been successfully synthesized as a possible positron emission tomography tracer to image TF expression levels. In vivo positron emission tomography studies to evaluate the full potential of [(18)F]ASIS are in progress.


Asunto(s)
Clorometilcetonas de Aminoácidos/química , Factor VII/química , Radiofármacos/síntesis química , Clorometilcetonas de Aminoácidos/farmacología , Animales , Dominio Catalítico , Factor VII/antagonistas & inhibidores , Radioisótopos de Flúor/química , Ratones , Radiofármacos/química , Radiofármacos/farmacocinética , Distribución Tisular
6.
J Endocrinol ; 190(3): 651-8, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17003266

RESUMEN

Lipid accumulation in non-adipose tissues is strongly associated with the metabolic syndrome, possibly due to aberrant partitioning of intracellular fatty acids between storage and oxidation. In the present study, we administered the non-metabolizable fatty acid analog [9,10-(3)H]-(R)-2-bromopalmitate, and authentic (14)C-palmitate to conscious rats, in order to directly examine the initial intracellular fate of fatty acids in a range of insulin-sensitive tissues, including white and red muscles, liver, white adipose tissue, and heart. Rats were studied after administration of an oral glucose load to examine the effect of physiological elevation of glucose and insulin. The tracer results showed that glucose administration partitioned fatty acid toward storage in white muscle (storage:uptake ratios, vehicle vs glucose; 0.64 +/- 0.02 vs 0.92 +/- 0.09, P < 0.05), and in liver (0.66 +/- 0.07 vs 0.98 +/- 0.04, P < 0.05), but not in red muscle (1.18 +/- 0.07 vs 1.36 +/- 0.11, P = not significant). These results demonstrate the physiological relevance of the so-called 'reverse' Randle cycle, but surprisingly show that it may be more important in white rather than oxidative red muscle.


Asunto(s)
Ácidos Grasos/metabolismo , Glucosa/administración & dosificación , Resistencia a la Insulina , Fibras Musculares de Contracción Rápida/metabolismo , Tejido Adiposo/metabolismo , Administración Oral , Animales , Glucemia/análisis , Isótopos de Carbono , Ácidos Grasos no Esterificados/sangre , Prueba de Tolerancia a la Glucosa , Glicerol/sangre , Insulina/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Tasa de Depuración Metabólica , Miocardio/metabolismo , Oxidación-Reducción , Palmitatos/administración & dosificación , Palmitatos/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...