Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 7(10): 1406-1417, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27425420

RESUMEN

The transporters for the neurotransmitters serotonin and dopamine (SERT and DAT, respectively) are targets for drugs used in the treatment of mental disorders and widely used drugs of abuse. Studies of prokaryotic homologues have advanced our structural understanding of SERT and DAT, but it still remains enigmatic whether the human transporters contain one or two high-affinity substrate binding sites. We have designed and employed 24 bivalent ligands possessing a highly systematic combination of substrate moieties (serotonin and/or dopamine) and aliphatic or poly(ethylene glycol) spacers to reveal insight into substrate recognition in SERT and DAT. An optimized bivalent ligand comprising two serotonin moieties binds SERT with 3,800-fold increased affinity compared to that of serotonin, suggesting that the human transporters have two distinct substrate binding sites. We show that the bivalent ligands are inhibitors of SERT and an experimentally validated docking model suggests that the bivalent compounds bind with one substrate moiety in the central binding site (the S1 site), whereas the other substrate moiety binds in a distinct binding site (the S2 site). A systematic study of nonconserved SERT/DAT residues surrounding the proposed binding region showed that nonconserved binding site residues do not contribute to selective recognition of substrates in SERT or DAT. This study provides novel insight into the molecular basis for substrate recognition in human transporters and provides an improved foundation for the development of new drugs targeting SERT and DAT.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Metanosulfonato de Etilo/análogos & derivados , Metanosulfonato de Etilo/farmacología , Humanos , Enlace de Hidrógeno , Ligandos , Simulación del Acoplamiento Molecular , Mutación , Neurotransmisores/farmacología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Xenopus
2.
ACS Chem Neurosci ; 6(11): 1892-900, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26389667

RESUMEN

Selective inhibitors of the human serotonin transporter (hSERT) have been first-line treatment against depression for several decades. Recently, vortioxetine was approved as a new therapeutic option for the treatment of depression. Vortioxetine represents a new class of antidepressant drugs with a multimodal pharmacological profile that in addition to potent inhibition of hSERT include agonistic or antagonistic effects at different serotonin receptors. We used a combination of computational, chemical, and biological methods to decipher the molecular basis for high affinity binding of vortioxetine in hSERT. X-ray crystal structures of the bacterial amino acid transporter LeuT and the Drosophila melanogaster dopamine transporter were used to build homology models of hSERT. Comparative modeling and ligand docking suggest that vortioxetine can adopt several distinct binding modes within the central binding site of hSERT. To distinguish between the identified binding modes, we determined the effect of 57 functional hSERT point mutants on vortioxetine potency and characterized seven structurally related analogs of vortioxetine in a subset of the point mutants. This allowed us to determine the orientation of vortioxetine within the central binding site and showed that only one of the proposed binding modes is functionally relevant. The findings provide important new insight about the molecular basis for high affinity recognition of vortioxetine in hSERT, which is essential for future structure-based drug discovery of novel multimodal drugs with fine-tuned selectivity across different transporter and receptor proteins in the human brain.


Asunto(s)
Antidepresivos/farmacología , Piperazinas/farmacología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Sulfuros/farmacología , Antidepresivos/química , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Piperazinas/química , Mutación Puntual , Unión Proteica , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Relación Estructura-Actividad , Sulfuros/química , Vortioxetina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...