Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Microbiol ; 62(1): e0109623, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38054730

RESUMEN

Rapid diagnostic tests (RDTs) for bloodstream infections have the potential to reduce time to appropriate antimicrobial therapy and improve patient outcomes. Previously, an in-house, lipid-based, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) method, Fast Lipid Analysis Technique (FLAT MS), has shown promise as a rapid pathogen identification method. In this study, FLAT MS for direct from blood culture identification was evaluated and compared to FDA-cleared identification methods using the Benefit-risk Evaluation Framework (BED-FRAME) analysis. FLAT MS was evaluated and compared to Bruker Sepsityper and bioMérieux BioFire FilmArray BCID2 using results from a previous study. For this study, 301 positive blood cultures were collected from the University of Maryland Medical Center. The RDTs were compared by their sensitivities, time-to-results, hands-on time, and BED-FRAME analysis. The overall sensitivity of all platforms compared to culture results from monomicrobial-positive blood cultures was 88.3%. However, the three RDTs differed in their accuracy for identifying Gram-positive bacteria, Gram-negative bacteria, and yeast. Time-to-results for FLAT MS, Sepsityper, and BioFire BCID2 were all approximately one hour. Hands-on times for FLAT MS, Sepsityper, and BioFire BCID2 were 10 (±1.3), 40 (±2.8), and 5 (±0.25) minutes, respectively. BED-FRAME demonstrated that each RDT had utility at different pathogen prevalence and relative importance. BED-FRAME is a useful tool that can used to determine which RDT is best for a healthcare center.


Asunto(s)
Bacteriemia , Sepsis , Humanos , Bacteriemia/diagnóstico , Bacteriemia/microbiología , Prueba de Diagnóstico Rápido , Técnicas Bacteriológicas/métodos , Sepsis/diagnóstico , Cultivo de Sangre , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Lípidos
2.
Clin Infect Dis ; 76(9): 1550-1558, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36533704

RESUMEN

BACKGROUND: We assessed how laboratories use and handle reporting of results of rapid diagnostics performed on positive blood culture broths, with a focus on antimicrobial resistance (AMR) markers. METHODS: A survey assembled by the Antibacterial Resistance Leadership Group Diagnostics Committee was circulated from December 2020 to May 2021. The survey was sent to local hospitals, shared on the ClinMicroNet and Division C listservs, and included in a College of American Pathologists proficiency testing survey. RESULTS: Ninety-six laboratories of various sizes across the United States (95%) and outside of the United States (5%) participated. Of the laboratories that had at least 1 rapid diagnostic in place (94%), significant heterogeneity in methods used and reporting practices was found across community (52%) and academic (40%) laboratories serving hospitals of various sizes. Respondents had implemented 1 to 6 different panels/platforms for a total of 31 permutations. Methods of reporting rapid organism identification and AMR results varied from listing all targets as "detected"/"not detected" (16-22%) without interpretive guidance, to interpreting results (23-42%), or providing therapeutic guidance comments to patient-facing healthcare teams (3-17%). CONCLUSIONS: Current approaches to reporting molecular AMR test results from positive blood culture vary significantly across clinical laboratories. Providing interpretative comments with therapeutic guidance alongside results reported may assist clinicians who are not well-versed in genetic mechanisms of AMR. However, this is currently not being done in all clinical laboratories. Standardized strategies for AMR gene result reporting are needed.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Humanos , Estados Unidos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Liderazgo , Cultivo de Sangre , Encuestas y Cuestionarios
3.
South Med J ; 104(1): 40-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21119555

RESUMEN

Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria are a group of emerging highly drug-resistant Gram-negative bacilli causing infections associated with significant morbidity and mortality. Once confined to outbreaks in the northeastern United States (US), they have spread throughout the US and most of the world. KPCs are an important mechanism of resistance for an increasingly wide range of Gram-negative bacteria and are no longer limited to K pneumoniae. KPC-producing bacteria are often misidentified by routine microbiological susceptibility testing and incorrectly reported as sensitive to carbapenems; however, resistance to the carbapenem antibiotic ertapenem is common and a better indicator of the presence of KPCs. Carbapenem antibiotics are generally not effective against KPC-producing organisms. The best therapeutic approach to KPC-producing organisms has yet to be defined; however, common treatments based on in vitro susceptibility testing are the polymyxins, tigecycline, and less frequently, aminoglycoside antibiotics. The purpose of this review is to identify the various challenges that KPC-producing bacteria present to clinicians. These include the need for special techniques for microbiological detection, the potential for nosocomial transmission, and therapeutic challenges related to limited, relatively unproven antimicrobial treatment options.


Asunto(s)
Antibacterianos/uso terapéutico , Proteínas Bacterianas/biosíntesis , Técnicas Bacteriológicas/métodos , Infecciones por Klebsiella , Klebsiella pneumoniae/enzimología , beta-Lactamasas/biosíntesis , Proteínas Bacterianas/análisis , Diagnóstico Diferencial , Humanos , Infecciones por Klebsiella/diagnóstico , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/aislamiento & purificación , Metaloproteínas , beta-Lactamasas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...