Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38543362

RESUMEN

In this study, Rhodamine B-containing chitosan-based films were prepared and characterized using their mechanical, photophysical, and antibacterial properties. The films were synthesized using the casting method and their mechanical properties, such as tensile strength and elongation at break, were found to be dependent on the chemical composition and drying process. Infrared spectroscopy and X-ray diffraction analysis were used to examine the chemical structure and degree of structural perfection of the films. The photophysical properties of the films, including absorption spectra, fluorescence detection, emission quantum yields, and lifetimes of excited states, were studied in detail. Rhodamine B-containing films exhibited higher temperature sensitivity and showed potential as fluorescent temperature sensors in the physiological range. The antibacterial activity of the films was tested against Gram-positive bacteria S. aureus and Gram-negative bacteria E. coli, with Rhodamine B-containing films demonstrating more pronounced antibacterial activity compared to blank films. The findings suggest that the elaborated chitosan-based films, particularly those containing Rhodamine B can be of interest for further research regarding their application in various fields such as clinical practice, the food industry, and agriculture due to their mechanical, photophysical, and antibacterial properties.

2.
Biosensors (Basel) ; 13(7)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37504079

RESUMEN

In this work, we obtained three new phosphorescent iridium complexes (Ir1-Ir3) of general stoichiometry [Ir(N^C)2(N^N)]Cl decorated with oligo(ethylene glycol) fragments to make them water-soluble and biocompatible, as well as to protect them from aggregation with biomolecules such as albumin. The major photophysical characteristics of these phosphorescent complexes are determined by the nature of two cyclometallating ligands (N^C) based on 2-pyridine-benzothiophene, since quantum chemical calculations revealed that the electronic transitions responsible for the excitation and emission are localized mainly at these fragments. However, the use of various diimine ligands (N^N) proved to affect the quantum yield of phosphorescence and allowed for changing the complexes' sensitivity to oxygen, due to the variations in the steric accessibility of the chromophore center for O2 molecules. It was also found that the N^N ligands made it possible to tune the biocompatibility of the resulting compounds. The wavelengths of the Ir1-Ir3 emission maxima fell in the range of 630-650 nm, the quantum yields reached 17% (Ir1) in a deaerated solution, and sensitivity to molecular oxygen, estimated as the ratio of emission lifetime in deaerated and aerated water solutions, displayed the highest value, 8.2, for Ir1. The obtained complexes featured low toxicity, good water solubility and the absence of a significant effect of biological environment components on the parameters of their emission. Of the studied compounds, Ir1 and Ir2 were chosen for in vitro and in vivo biological experiments to estimate oxygen concentration in cell lines and tumors. These sensors have demonstrated their effectiveness for mapping the distribution of oxygen and for monitoring hypoxia in the biological objects studied.


Asunto(s)
Neoplasias , Oxígeno , Humanos , Ligandos , Hipoxia , Agua
3.
Molecules ; 27(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35630633

RESUMEN

A series of [Ir(N^C)2(N^N)]+ NIR-emitting orthometalated complexes (1-7) has been prepared and structurally characterized using elemental analysis, mass-spectrometry, and NMR spectroscopy. The complexes display intense phosphorescence with vibrationally structured emission bands exhibiting the maxima in the range 713-722 nm. The DFT and TD DFT calculations showed that the photophysical characteristics of these complexes are largely determined by the properties of the metalating N^C ligands, with their major contribution into formation of the lowest S1 and T1 excited states responsible for low energy absorption and emission, respectively. Emission lifetimes of 1-7 in degassed methanol solution vary from 1.76 to 5.39 µs and show strong quenching with molecular oxygen to provide an order of magnitude lifetime reduction in aerated solution. The photophysics of two complexes (1 and 7) were studied in model physiological media containing fetal bovine serum (FBS) and Dulbecco's Modified Eagle Medium (DMEM) to give linear Stern-Volmer calibrations with substantially lower oxygen-quenching constants compared to those obtained in methanol solution. These observations were interpreted in terms of the sensors' interaction with albumin, which is an abundant component of FBS and cell media. The studied complexes displayed acceptable cytotoxicity and preferential localization, either in mitochondria (1) or in lysosomes (7) of the CHO-K1 cell line. The results of the phosphorescence lifetime imaging (PLIM) experiments demonstrated considerable variations of the sensors' lifetimes under normoxia and hypoxia conditions and indicated their applicability for semi-quantitative measurements of oxygen concentration in living cells. The complexes' emission in the NIR domain and the excitation spectrum, extending down to ca. 600 nm, also showed that they are promising for use in in vivo studies.


Asunto(s)
Metanol , Radiación , Ligandos , Espectroscopía de Resonancia Magnética , Oxígeno
4.
Int J Biol Macromol ; 209(Pt B): 2175-2187, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35513092

RESUMEN

Ultrasonic approach to the synthesis of the first selenium-containing derivatives of chitin and chitosan has been developed. The synthetic procedure is simple, provides high yields, does not require harsh conditions, and uses water as the reaction medium. The elaborated chitin and chitosan derivatives and their based nanoparticles are non-toxic and possess high antibacterial and antifungal activity. Their antimicrobial activity exceeds the effect of the classic antibiotics (Ampicillin and Gentamicin) and the antifungal drug Amphotericin B. The obtained selenium-containing cationic chitin and chitosan derivatives exhibit a high transfection activity and are promising gene delivery vectors. Nanoparticles of the synthesized polymers are highly efficient catalysts for the oxidation of 1-phenylethyl alcohol to acetophenone by bromine at room temperature.


Asunto(s)
Quitosano , Selenio , Antibacterianos/farmacología , Antifúngicos/farmacología , Catálisis , Quitina
5.
Dalton Trans ; 51(4): 1257-1280, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34878463

RESUMEN

Application of NIR (near-infrared) emitting transition metal complexes in biomedicine is a rapidly developing area of research. Emission of this class of compounds in the "optical transparency windows" of biological tissues and the intrinsic sensitivity of their phosphorescence to oxygen resulted in the preparation of several commercial oxygen sensors capable of deep (up to whole-body) and quantitative mapping of oxygen gradients suitable for in vivo experimental studies. In addition to this achievement, the last decade has also witnessed the increased growth of successful alternative applications of NIR phosphors that include (i) site-specific in vitro and in vivo visualization of sophisticated biological models ranging from 3D cell cultures to intact animals; (ii) sensing of various biologically relevant analytes, such as pH, reactive oxygen and nitrogen species, RedOx agents, etc.; (iii) and several therapeutic applications such as photodynamic (PDT), photothermal (PTT), and photoactivated cancer (PACT) therapies as well as their combinations with other therapeutic and imaging modalities to yield new variants of combined therapies and theranostics. Nevertheless, emerging applications of these compounds in experimental biomedicine and their implementation as therapeutic agents practically applicable in PDT, PTT, and PACT face challenges related to a critically important improvement of their photophysical and physico-chemical characteristics. This review outlines the current state of the art and achievements of the last decade and stresses the most promising trends, major development prospects, and challenges in the design of NIR phosphors suitable for biomedical applications.


Asunto(s)
Técnicas Biosensibles , Complejos de Coordinación/química , Diagnóstico por Imagen , Sustancias Luminiscentes/química , Humanos
6.
Molecules ; 26(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068190

RESUMEN

Synthesis of biocompatible near infrared phosphorescent complexes and their application in bioimaging as triplet oxygen sensors in live systems are still challenging areas of organometallic chemistry. We have designed and synthetized four novel iridium [Ir(N^C)2(N^N)]+ complexes (N^C-benzothienyl-phenanthridine based cyclometalated ligand; N^N-pyridin-phenanthroimidazol diimine chelate), decorated with oligo(ethylene glycol) groups to impart these emitters' solubility in aqueous media, biocompatibility, and to shield them from interaction with bio-environment. These substances were fully characterized using NMR spectroscopy and ESI mass-spectrometry. The complexes exhibited excitation close to the biological "window of transparency", NIR emission at 730 nm, and quantum yields up to 12% in water. The compounds with higher degree of the chromophore shielding possess low toxicity, bleaching stability, absence of sensitivity to variations of pH, serum, and complex concentrations. The properties of these probes as oxygen sensors for biological systems have been studied by using phosphorescence lifetime imaging experiments in different cell cultures. The results showed essential lifetime response onto variations in oxygen concentration (2.0-2.3 µs under normoxia and 2.8-3.0 µs under hypoxia conditions) in complete agreement with the calibration curves obtained "in cuvette". The data obtained indicate that these emitters can be used as semi-quantitative oxygen sensors in biological systems.


Asunto(s)
Materiales Biocompatibles/química , Iridio/química , Luminiscencia , Oxígeno/análisis , Animales , Células CHO , Cricetulus , Células HeLa , Humanos , Conformación Molecular , Espectroscopía de Protones por Resonancia Magnética , Fracciones Subcelulares/metabolismo
7.
Bioconjug Chem ; 31(5): 1327-1343, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32223218

RESUMEN

Two NIR-emitting platinum [Pt(N^N^C)(phosphine)] and iridium [Ir(N^C)2(N^N)]+ complexes containing reactive succinimide groups were synthesized and characterized with spectroscopic methods (N^N^C, 1-phenyl-3-(pyridin-2-yl)benzo[4,5]imidazo[1,2-a]pyrazine, N^C, 6-(2-benzothienyl)phenanthridine, phosphine-3-(diphenylphosphaneyl)propanoic acid N-hydroxysuccinimide ether, and N^N, 4-oxo-4-((1-(pyridin-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)butanoic acid N-hydroxysuccinimide ether). Their photophysics were carefully studied and analyzed using time-dependent density functional theory calculations. These complexes were used to prepare luminescent micro- and nanoparticles with the "core-shell" morphology, where the core consisted of biodegradable polymers of different hydrophobicity, namely, poly(d,l-lactic acid), poly(ε-caprolactone), and poly(ω-pentadecalactone), whereas the shell was formed by covalent conjugation with poly(l-lysine) covalently labeled with the platinum and iridium emitters. The surface of the species was further modified with heparin to reverse their charge from positive to negative values. The microparticles' size determined with dynamic laser scanning varies considerably from 720 to 1480 nm, but the nanoparticles' diameter falls in a rather narrow range, 210-230 nm. The species with a poly(l-lysine) shell display a high positive (>30 mV) zeta-potential that makes them essentially stable in aqueous media. Inversion of the surface charge to a negative value with the heparin cover did not deteriorate the species' stability. The iridium- and platinum-containing particles displayed emissions the spectral patterns of which were essentially similar to those of unconjugated complexes, which indicate retention of the chromophore nature upon binding to the polymer and further immobilization onto polyester micro- and nanoparticles for drug delivery. The obtained particles were tested to determine their ability to penetrate into different cells types: cancer cells, stem cells, and fibroblasts. It was found that all types of particles could effectively penetrate into all cells types under investigation. Nanoparticles were shown to penetrate into the cells more effectively than microparticles. However, positively charged nanoparticles covered with poly(l-lysine) seem to interact with negatively charged proteins in the medium and enter the inner part of the cells less effectively than nanoparticles covered with poly(l-lysine)/heparin. In the case of microparticles, the species with positive zeta-potentials were more readily up-taken by the cells than those with negative values.


Asunto(s)
Portadores de Fármacos/química , Rayos Infrarrojos , Iridio/química , Nanoestructuras/química , Platino (Metal)/química , Polímeros/química , Animales , Ratones , Células 3T3 NIH , Succinimidas/química
8.
Int J Biol Macromol ; 149: 682-692, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31991209

RESUMEN

The metal-assisted nitrone-nitrile cycloaddition reaction is apply to empower chitosan chemistry. The ultrasonic irradiation has proven to efficiently accelerate the cycloaddition affording new heterocyclic (1,2,4-oxadiazoline) chitosan derivatives and avoiding ultrasonic degradation of the chitosan macromolecules. By varying the nitrone nature, both water- and toluene-soluble chitosan derivatives were successfully synthesized. Relying on the ionic gelation approach nanoparticles of heterocyclic chitosan derivatives were prepared. Water-soluble chitosan derivative demonstrated a high antibacterial activity coupled with low toxicity. The toxicity of the synthesized heterocyclic chitosan derivatives and their based nanoparticles are comparable with those of the starting chitosan, while their antibacterial activity is superior. Toluene-soluble derivatives are shown to be efficient homogeneous catalysts towards monoglyceride synthesis via the epoxide ring opening. They efficiently catalyze selective conversion of fatty acids and glycidol into corresponding monoglycerides allowing one to simplify significantly the procedure for separating the reaction product from the catalyst for its recovery and reusage.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Quitosano/antagonistas & inhibidores , Quitosano/farmacología , Nanopartículas/química , Catálisis , Quitosano/efectos de la radiación , Reacción de Cicloadición , Compuestos Heterocíclicos/química , Concentración de Iones de Hidrógeno , Metales/química , Monoglicéridos/química , Nanopartículas/efectos de la radiación , Nitrilos/química , Óxidos de Nitrógeno , Polisacáridos/química , Ultrasonido , Agua/química
9.
Int J Biol Macromol ; 143: 143-152, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31805332

RESUMEN

In this work, we demonstrate that the thiol-yne click reaction could be efficiently mediated by ultrasonic irradiation and implement the ultrasound-assisted thiol-yne click reaction to chitosan chemistry as a polymer-analogous transformation. We optimize power and frequency of ultrasound to preserve selectivity of the click reaction and avoid ultrasonic degradation of the chitosan polymer chain. Thus, we obtain a new water-soluble betaine. Using ionic gelation of the obtained betaine derivatives of chitosan, we prepare nanoparticles with a unimodal size distribution. Furthermore, we present results of antibacterial and transfection activity tests for the chitosan derivatives and their based nanoparticles. The derivative with a medium molecular weight and a high degree of substitution demonstrated the best antibacterial effect. It derived nanoparticles with a size of ca. 100 nm and ζ-potential of ca. +69 mV revealed even higher antibacterial activity, slightly superior to commercial antibiotics ampicillin and gentamicin. On the contrary, the obtained polymers possess a much more pronounced transfection activity as compared with their based nanoparticles and species with a low degree of substitution acts as the most efficient transfecting agent. Moreover, the obtained betaine chitosan derivatives as well as their derived nanoparticles are non-toxic.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Cationes/química , Quitosano/química , Química Clic , Nanopartículas/química , Sonicación , Compuestos de Sulfhidrilo/química , Antibacterianos/síntesis química , Catálisis , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fenómenos Químicos , Técnicas de Química Sintética , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Análisis Espectral
10.
Int J Biol Macromol ; 139: 103-113, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31374266

RESUMEN

This work describes ultrasound-assisted phenol-yne addition of p-hydroxybenzaldehyde and propargylic ester of betaine hydrochloride giving only 2-((3-(4-formylphenoxy)allyl)oxy)-N,N,N-trimethyl-2-oxoethan-1-aminium chloride as a product at 100kHz 300W in water. The ultrasonic assisted phenol-yne addition was enhanced to chitosan chemistry. Phenolic chitosan derivatives were obtained by treatment of chitosan with o-, m- or p-hydroxybenzaldehyde followed by reduction of the formed CN bound by NaBH4. The phenolic chitosan derivatives (phenolic component) were involved in ultrasound-mediated reaction with propargylic ester of betaine hydrochloride (yne component). The reaction led to betaine chitosan derivatives in different degree of substitution as o-, m- and p-isomers. The phenolic and betaine derivatives were tested as antibacterial agents against E. coli in comparison with reference antibiotic Tetracycline. Betaine derivatives showed high antibacterial activity. The most effective polymer was p-isomer of high substituted betaine derivative and its activity was more than 2 times higher than the activity of Tetracycline. The nanoparticles based on this polymer were obtained by ionic gelation method. They had 2Rh 126nm, ξ-potential 20mV and were more effective than the corresponding chitosan derivative.


Asunto(s)
Alquinos/química , Quitosano/química , Quitosano/farmacología , Nanopartículas/química , Fenoles/química , Ondas Ultrasónicas , Agua/química , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Benzaldehídos/química , Betaína/química , Técnicas de Química Sintética , Quitosano/síntesis química , Escherichia coli/efectos de los fármacos , Solubilidad
11.
RSC Adv ; 9(27): 15531-15535, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35514835

RESUMEN

New simple, fast, effective and environmentally friendly one-pot method for the synthesis of extensively used tetrakis(acetonitrile)copper(i) complexes with BF4 -, PF6 - and ClO4 - counterions is invented and optimized. The approach suggested allows using water as solvent and minimizes amounts of toxic organic reagents in the synthetic protocol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA