RESUMEN
Simulating a viral infection in tumor cells is an attractive concept to eliminate tumor cells. We previously reported the molecular design and the in vitro potency of recombinant monoclonal antibodies fused to a virus-derived peptide MHC class I complex that bypass the peptide processing and MHC loading pathway and directly displays a viral peptide in an MHC class I complex on the tumor cell surface. Here, we show that a vaccination-induced single peptide-specific CD8 T cell response was sufficient to eliminate B16 melanoma tumor cells in vivo in a fully immunocompetent, syngeneic mouse tumor model when mice were treated with mouse pMHCI-IgGs fusion proteins targeting the mouse fibroblast activation protein. Tumor growth of small, established B16 lung metastases could be controlled. The pMHCI-IgG had similar potency as an analogous pan-CD3 T-cell bispecific antibody. In contrast to growth control of small tumors, none of the compounds controlled larger solid tumors of MC38 cancer cells, despite penetration of pMHCI-IgGs into the tumor tissue and clear attraction and activation of antigen-specific CD8 T cells inside the tumor. pMHCI-IgG can have a similar potency as classical pan-T-cell recruiting molecules. The results also highlight the need to better understand immune suppression in advanced solid tumors.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Inmunoglobulina G/inmunología , Melanoma Experimental/inmunología , Animales , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión/inmunologíaRESUMEN
Dendritic cells (DCs) expressing the chemokine receptor XCR1 are specialized in antigen cross-presentation to control infections with intracellular pathogens. XCR1-positive (XCR1+) DCs are attracted by XCL1, a γ-chemokine secreted by activated CD8+ T cells and natural killer cells. Rat cytomegalovirus (RCMV) is the only virus known to encode a viral XCL1 analog (vXCL1) that competes for XCR1 binding with the endogenous chemokine. Here we show that vXCL1 from two different RCMV strains, as well as endogenous rat XCL1 (rXCL1) bind to and induce chemotaxis exclusively in rat XCR1+ DCs. Whereas rXCL1 activates the XCR1 Gi signaling pathway in rats and humans, both of the vXCL1s function as species-specific agonists for rat XCR1. In addition, we demonstrate constitutive internalization of XCR1 in XCR1-transfected HEK293A cells and in splenic XCR1+ DCs. This internalization was independent of ß-arrestin 1 and 2 and was enhanced after binding of vXCL1 and rXCL1; however, vXCL1 appeared to be a stronger agonist. These findings suggest a decreased surface expression of XCR1 during DC cultivation at 37°C, and subsequent impairment of chemotactic activity and XCR1+ DC function.
Asunto(s)
Quimiocinas C/metabolismo , Reactividad Cruzada , Células Dendríticas/inmunología , Muromegalovirus/inmunología , Receptores de Quimiocina/metabolismo , Animales , Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Quimiotaxis , Células Asesinas Naturales/inmunología , Ratas , Receptores Acoplados a Proteínas G/metabolismoRESUMEN
B-cell interaction with follicular helper T cells and subsequent differentiation of B cells into high-affinity APCs normally takes place in secondary lymphoid organs. The costimulator ICOS plays a key role in this process and is therefore considered as an attractive target to modulate exaggerated B-cell responses in autoimmune or allergic diseases. Inflamed tissues were recently recognized as additional sites of active T-cell/B-cell interaction. To analyze whether ICOS costimulation is also important there, we employed a mouse airway inflammation model that allows direct comparison of immune reactions in the lung-draining lymph node and the lung tissue as well as assessment of the relative importance of dendritic cells versus B cells as APCs. In both organs, ICOS regulated the pool size of antigen-specific T and B cells and B-cell differentiation into germinal center(-like) cells but not into antibody-secreting cells. In the lymph node, lack of ICOS costimulation drastically reduced the frequency of T follicular helper cells but did not affect production of T-helper cell type 2 (Th2) cytokines. Vice versa in the lung tissue, ICOS did not change PD-1 expression on infiltrating T cells but regulated Th2 cytokine production, a process for which ICOS ligand expression on B cells was of particular importance. Taken together, the results of this study show that ICOS differentially regulates effector T cells in secondary lymphoid organs and inflamed tissues but that blockade of the ICOS pathway is suitable to target T cell-dependent B cell responses at both sites.
Asunto(s)
Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Inflamación/patología , Tejido Linfoide/metabolismo , Linfocitos T/metabolismo , Animales , Células Presentadoras de Antígenos/metabolismo , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Eosinófilos/metabolismo , Inmunoglobulina A/metabolismo , Cambio de Clase de Inmunoglobulina , Inmunoglobulina E/metabolismo , Ligando Coestimulador de Linfocitos T Inducibles/metabolismo , Ganglios Linfáticos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía/patología , Receptor de Muerte Celular Programada 1/metabolismoRESUMEN
XCL1 is the ligand for XCR1, a chemokine receptor uniquely expressed on cross-presenting dendritic cells (DC) in mouse and man. We are interested in establishing therapeutic vaccines based on XCL1-mediated targeting of peptides or proteins into these DC. Therefore, we have functionally analyzed various XCL1 domains in highly relevant settings in vitro and in vivo. Murine XCL1 fused to ovalbumin (XCL1-OVA) was compared to an N-terminal deletion variant lacking the first seven N-terminal amino acids and to several C-terminal (deletion) variants. Binding studies with primary XCR1+ DC revealed that the N-terminal region stabilizes the binding of XCL1 to its receptor, as is known for other chemokines. Deviating from the established paradigm for chemokines, the N-terminus does not contain critical elements for inducing chemotaxis. On the contrary, this region appears to limit the chemotactic action of XCL1 at higher concentrations. A participation of the XCL1 C-terminus in receptor binding or chemotaxis could be excluded in a series of experiments. Binding studies with apoptotic and necrotic XCR1-negative cells suggested a second function for XCL1: marking of stressed cells for uptake into cross-presenting DC. In vivo studies using CD8+ T cell proliferation and cytotoxicity as readouts confirmed the critical role of the N-terminus for antigen targeting, and excluded any involvement of the C-terminus in the uptake, processing, and presentation of the fused OVA antigen. Together, these studies provide basic data on the function of the various XCL1 domains as well as relevant information on XCL1 as an antigen carrier in therapeutic vaccines.
Asunto(s)
Quimiocinas C , Células Dendríticas/inmunología , Portadores de Fármacos , Ovalbúmina , Receptores de Quimiocina/inmunología , Proteínas Recombinantes de Fusión , Animales , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Proliferación Celular/efectos de los fármacos , Quimiocinas C/química , Quimiocinas C/genética , Quimiocinas C/farmacología , Quimiotaxis/efectos de los fármacos , Quimiotaxis/inmunología , Células Dendríticas/citología , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Ratones , Ratones Transgénicos , Ovalbúmina/química , Ovalbúmina/genética , Ovalbúmina/farmacología , Dominios Proteicos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Relación Estructura-Actividad , Vacunas/química , Vacunas/genética , Vacunas/farmacologíaRESUMEN
Adaptive cellular immunity is initiated by antigen-specific interactions between T lymphocytes and dendritic cells (DCs). Plasmacytoid DCs (pDCs) support antiviral immunity by linking innate and adaptive immune responses. Here we examined pDC spatiotemporal dynamics during viral infection to uncover when, where, and how they exert their functions. We found that pDCs accumulated at sites of CD8+ T cell antigen-driven activation in a CCR5-dependent fashion. Furthermore, activated CD8+ T cells orchestrated the local recruitment of lymph node-resident XCR1 chemokine receptor-expressing DCs via secretion of the XCL1 chemokine. Functionally, this CD8+ T cell-mediated reorganization of the local DC network allowed for the interaction and cooperation of pDCs and XCR1+ DCs, thereby optimizing XCR1+ DC maturation and cross-presentation. These data support a model in which CD8+ T cells upon activation create their own optimal priming microenvironment by recruiting additional DC subsets to the site of initial antigen recognition.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Quimiotaxis de Leucocito/inmunología , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Animales , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ratones , Ratones TransgénicosRESUMEN
Autoimmune diseases and other inflammatory conditions are characterized by large lymphocytic tissue infiltrates in which T and B cells can be found in close contact. Here, using a murine airway inflammation model, we compare antigen-specific T and B cells in lung tissue versus lung-draining lymph node. In the lung we identify a B-cell population exhibiting a classical germinal centre phenotype without being organized into ectopic lymphoid tissue. By contrast, classical CXCR5(+) Bcl-6(+) T follicular helper cells are not present. Nevertheless, lung-infiltrating T cells exhibit follicular helper-like properties including the potential to provide help to naive B cells. The lung tissue is also a survival niche for memory T and B cells remaining in residual peribronchial infiltrates after resolution of inflammation. Collectively, this study shows the importance of T/B cooperation not only in lymph nodes but also in inflamed peripheral tissues for local antibody responses to infection and autoimmunity.
Asunto(s)
Linfocitos B/inmunología , Centro Germinal/inmunología , Pulmón/inmunología , Cooperación Linfocítica/inmunología , Neumonía/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Formación de Anticuerpos/inmunología , Autoinmunidad/inmunología , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Inflamación , Ganglios Linfáticos/inmunología , Tejido Linfoide/inmunología , Ratones , Ratones Transgénicos , Ovalbúmina/toxicidad , Neumonía/inducido químicamente , Proteínas Proto-Oncogénicas c-bcl-6 , Receptores de Antígenos de Linfocitos T/genética , Receptores CXCR5RESUMEN
Dendritic cells (DC) in the thymus have an important role in the establishment of central tolerance by promoting negative selection of autoreactive T cells and regulatory T-cell differentiation. Whereas human DC have recently been studied in various tissues in more detail, thymic DC subsets are still ill-defined. In the present work, we studied the binding of 71 monoclonal antibodies (mAb) submitted to the HLDA10 workshop to human CD123(+) plasmacytoid DC and the two subsets of conventional DC (cDC, CD141(+) and CD11b(+)) isolated from thymus tissue of infants undergoing corrective heart surgery. Within the panel, we found mAb binding to thymic pDC and both cDC subsets (for example, anti-Clec12A, TIM-3, Clec4A, CCR5, Axl, FLT3), but most of them additionally reacted with other thymic cell types. MAb directed to CD85h (ILT1) and the C-type lectin Clec7A (now CD369) reacted selectively with both cDC subsets, but not with other cells. Only one mAb directed to CD85g (ILT7) stained thymic pDC in a highly specific manner. Clec9A (DNGR1, now CD370) was the only tested HLDA10 antigen exclusively expressed on thymic CD141(+) cDC. The present report summarizes all data obtained.
RESUMEN
The question of which dendritic cells (DCs) cross-present peripheral tumor antigens remains unanswered. We assessed the ability of multiple skin-derived and lymphoid resident DCs to perform this function in a novel orthotopic murine melanoma model where tumor establishment and expansion is within the skin. Two migratory populations defined as CD103-XCR1+ and CD103+XCR1+ efficiently cross-presented melanoma-derived antigen, with the CD103-XCR1+ DCs surprisingly dominating this process. These results are critical for understanding how antitumor CD8+ T cell immunity is coordinated to tumor antigens present within the skin.
RESUMEN
Since the identification of mouse dendritic cells (DC) in the early 70s, all attempts to consistently classify the identified functional DC subpopulations according to their surface molecule expression failed. In the absence of DC lineage markers, a great variety of non-congruent surface molecules were used instead. Recent advances in the understanding of the involvement of transcription factors in the differentiation of DC subpopulations, together with the identification of a lineage marker for cross-presenting DC, have now allowed to establish a consistent and unified DC classification in the mouse. We demonstrate in the present article that all conventional DC in the mouse can be universally subdivided into either XCR1(+) ("cross-presenting") DC or SIRPα(+) DC, irrespective of their activation status. This advancement will greatly facilitate future work on the biology of mouse DC. We discuss this new classification in view of current DC classification systems in the mouse and the human.
RESUMEN
The co-stimulators ICOS (inducible T cell co-stimulator) and CD28 are both important for T follicular helper (TFH) cells, yet their individual contributions are unclear. Here, we show that each molecule plays an exclusive role at different stages of TFH cell development. While CD28 regulated early expression of the master transcription factor Bcl-6, ICOS co-stimulation was essential to maintain the phenotype by regulating the novel TFH transcription factor Klf2 via Foxo1. Klf2 directly binds to Cxcr5, Ccr7, Psgl-1, and S1pr1, and low levels of Klf2 were essential to maintain this typical TFH homing receptor pattern. Blocking ICOS resulted in relocation of fully developed TFH cells back to the T cell zone and reversion of their phenotype to non-TFH effector cells, which ultimately resulted in breakdown of the germinal center response. Our study describes for the first time the exclusive role of ICOS and its downstream signaling in the maintenance of TFH cells by controlling their anatomical localization in the B cell follicle.
Asunto(s)
Regulación de la Expresión Génica , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Fenotipo , Subgrupos de Linfocitos T , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Animales , Antígenos CD28/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Regulación hacia Abajo , Femenino , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Centro Germinal/inmunología , Centro Germinal/metabolismo , Humanos , Ligando Coestimulador de Linfocitos T Inducibles/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Tonsila Palatina/inmunología , Tonsila Palatina/metabolismo , Unión Proteica , Receptores CCR7/metabolismo , Receptores CXCR5/metabolismo , Transducción de Señal , Linfocitos T Colaboradores-Inductores/citologíaRESUMEN
Current subunit vaccines are incapable of inducing Ag-specific CD8(+) T cell cytotoxicity needed for the defense of certain infections and for therapy of neoplastic diseases. In experimental vaccines, cytotoxic responses can be elicited by targeting of Ag into cross-presenting dendritic cells (DC), but almost all available systems use target molecules also expressed on other cells and thus lack the desired specificity. In the present work, we induced CD8(+) T cell cytotoxicity by targeting of Ag to XCR1, a chemokine receptor exclusively expressed on murine and human cross-presenting DC. Targeting of Ag with a mAb or the chemokine ligand XCL1 was highly specific, as determined with XCR1-deficient mice. When applied together with an adjuvant, both vector systems induced a potent cytotoxic response preventing the outgrowth of an inoculated aggressive tumor. By generating a transgenic mouse only expressing the human XCR1 on its cross-presenting DC, we could demonstrate that targeting of Ag using human XCL1 as vector is fully effective in vivo. The specificity and efficiency of XCR1-mediated Ag targeting to cross-presenting DC, combined with its lack of adverse effects, make this system a prime candidate for the development of therapeutic cytotoxic vaccines in humans.
Asunto(s)
Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Receptores de Quimiocina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Vacunas contra el Cáncer/inmunología , Diferenciación Celular , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Humanos , Cambio de Clase de Inmunoglobulina , Activación de Linfocitos/inmunología , Ratones , Ratones Transgénicos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Unión Proteica , Receptores de Quimiocina/genética , Receptores Acoplados a Proteínas G/genética , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Carga TumoralRESUMEN
In the past, lack of lineage markers confounded the classification of dendritic cells (DC) in the intestine and impeded a full understanding of their location and function. We have recently shown that the chemokine receptor XCR1 is a lineage marker for cross-presenting DC in the spleen. Now, we provide evidence that intestinal XCR1(+) DC largely, but not fully, overlap with CD103(+) CD11b(-) DC, the hypothesized correlate of "cross-presenting DC" in the intestine, and are selectively dependent in their development on the transcription factor Batf3. XCR1(+) DC are located in the villi of the lamina propria of the small intestine, the T cell zones of Peyer's patches, and in the T cell zones and sinuses of the draining mesenteric lymph node. Functionally, we could demonstrate for the first time that XCR1(+)/CD103(+) CD11b(-) DC excel in the cross-presentation of orally applied antigen. Together, our data show that XCR1 is a lineage marker for cross-presenting DC also in the intestinal immune system. Further, extensive phenotypic analyses reveal that expression of the integrin SIRPα consistently demarcates the XCR1(-) DC population. We propose a simplified and consistent classification system for intestinal DC based on the expression of XCR1 and SIRPα.
RESUMEN
Protective immunity against preerythrocytic malaria parasite infection is difficult to achieve. Intracellular Plasmodium parasites likely minimize antigen presentation by surface-expressed major histocompatibility complex class I (MHC-I) molecules on infected cells, yet they actively remodel their host cells by export of parasite factors. Whether exported liver-stage proteins constitute better candidates for MHC-I antigen presentation to CD8(+) T lymphocytes remains unknown. Here, we systematically characterized the contribution of protein export to the magnitude of antigen-specific T-cell responses against Plasmodium berghei liver-stage parasites in C57BL/6 mice. We generated transgenic sporozoites that secrete a truncated ovalbumin (OVA) surrogate antigen only in the presence of an amino-terminal protein export element. Immunization with live attenuated transgenic sporozoites revealed that antigen export was not critical for CD8(+) T-cell priming but enhanced CD8(+) T-cell proliferation in the liver. Upon transfer of antigen-specific CD8(+) T cells, liver-stage parasites secreting the target protein were eliminated more efficiently. We conclude that Plasmodium parasites strictly control protein export during liver infection to minimize immune recognition. Strategies that enhance the discharge of parasite proteins into infected hepatocytes could improve the efficacy of candidate preerythrocytic malaria vaccines. Importance: Vaccine development against Plasmodium parasites remains a priority in malaria research. The most advanced malaria subunit vaccine candidates contain Plasmodium surface proteins with important roles for parasite vital functions. A fundamental question is whether recognition by effector CD8(+) T cells is restricted to sporozoite surface antigens or extends to parasite proteins that are synthesized during the extensive parasite expansion phase in the liver. Using a surrogate model antigen, we found that a cytoplasmic antigen is able to induce robust protective CD8(+) T-cell responses, but protein export further enhances immunogenicity and protection. Our results show that a cytoplasmic localization does not exclude a protein's candidacy for malaria subunit vaccines and that protein secretion can enhance protective immunity.
Asunto(s)
Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , Linfocitos T CD8-positivos/inmunología , Plasmodium berghei/inmunología , Plasmodium berghei/metabolismo , Esporozoítos/inmunología , Esporozoítos/metabolismo , Animales , Presentación de Antígeno/inmunología , Presentación de Antígeno/fisiología , Células Cultivadas , Hígado/inmunología , Hígado/parasitología , Masculino , Ratones , Ratones Transgénicos , Ovalbúmina/metabolismoRESUMEN
Bone resorption is seminal for the physiological remodeling of bone during life. However, this process needs to be strictly controlled; excessive bone resorption results in pathologic bone loss, osteoporosis, and fracture. We describe a control mechanism of bone resorption by the adaptive immune system. CD80/86, a pair of molecules expressed by antigen-presenting cells and involved in T cell costimulation, act as negative regulator for the generation of bone-resorbing osteoclasts. CD80/86-deficient mice were osteopenic because of increased osteoclast differentiation. CD80/86-deficient osteoclasts escaped physiological inhibition by CTLA-4 or regulatory T cells. Mechanistically, engagement of CD80/86 by CTLA-4 induced activation of the enzyme indoleamine 2,3-dioxygenase (IDO) in osteoclast precursors, which degraded tryptophan and promoted apoptosis. Concordantly, IDO-deficient mice also showed an osteopenic bone phenotype with higher numbers of osteoclast precursors and osteoclasts. Also, IDO-deficient mononuclear cells escaped the anti-osteoclastogenic effect of CTLA-4. This molecular mechanism was also present in humans because targeting CD80/86 by abatacept, a CTLA-4-immunoglobulin fusion protein, reduced, whereas blockade of CTLA-4 by ipilimumab antibody enhanced, the frequency of peripheral osteoclast precursors and osteoclastogenesis. In summary, these data show an important role of the adaptive immune system, in particular T cell CD80/86 costimulation molecules, in the physiological regulation of bone resorption and preservation of bone mass, as well as affect the understanding of the function of current and future drugs fostering or blocking the effects of CTLA-4 in humans.
Asunto(s)
Antígeno B7-1/inmunología , Antígeno B7-2/inmunología , Diferenciación Celular/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Osteoclastos/citología , Linfocitos T/inmunología , Triptófano/metabolismo , Animales , Antígeno B7-1/genética , Antígeno B7-2/genética , Antígeno CTLA-4/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Ratones , Ratones Noqueados , FN-kappa B/metabolismoRESUMEN
Cytomegaloviruses (CMV) have developed various strategies to escape the immune system of the host. One strategy involves the expression of virus-encoded chemokines to modulate the host chemokine network. We have identified in the English isolate of rat CMV (murid herpesvirus 8 [MuHV8]) an open reading frame encoding a protein homologous to the chemokine XCL1, the only known C chemokine. Viral XCL1 (vXCL1), a glycosylated protein of 96 amino acids, can be detected 13 h postinfection in the supernatant of MuHV8-infected rat embryo fibroblasts. vXCL1 exclusively binds to CD4(-) rat dendritic cells (DC), a subset of DC that express the corresponding chemokine receptor XCR1. Like endogenous rat XCL1, vXCL1 selectively chemoattracts XCR1(+) CD4(-) DC. Since XCR1(+) DC in mice and humans have been shown to excel in antigen cross-presentation and thus in the induction of cytotoxic CD8(+) T lymphocytes, the virus has apparently hijacked this gene to subvert cytotoxic immune responses. The biology of vXCL1 offers an interesting opportunity to study the role of XCL1 and XCR1(+) DC in the cross-presentation of viral antigens.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Quimiocinas C/metabolismo , Reactividad Cruzada , Citomegalovirus/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos Virales/inmunología , Secuencia de Bases , Linfocitos T CD4-Positivos/metabolismo , Quimiotaxis de Leucocito , Citomegalovirus/inmunología , Cartilla de ADN , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Procesamiento Proteico-Postraduccional , Ratas , Ratas Endogámicas Lew , Homología de Secuencia de AminoácidoRESUMEN
Attenuation of T cell-mediated damage of blood endothelial cells (BECs) in transplanted organs is important to prevent transplant vasculopathy (TV) and chronic rejection. Here, we assessed the importance of minor histocompatibility antigen (mHA) distribution and different coinhibitory molecules for T cell-BEC interaction. A transgenic mHA was directed specifically to BECs using the Tie2 promoter and cellular interactions were assessed in graft-versus-host disease-like and heterotopic heart transplantation settings. We found that cognate CD4(+) T-cell help was critical for the activation of BEC-specific CD8(+) T cells. However, systemic mHA expression on BECs efficiently attenuated adoptively transferred, BEC-specific CD4(+) and CD8(+) T cells and hence prevented tissue damage, whereas restriction of mHA expression to heart BECs precipitated the development of TV. Importantly, the lack of the coinhibitory molecules programmed death-1 (PD-1) and B and T lymphocyte attenuator fostered the initial activation of BEC-specific CD4(+) T cells, but did not affect development of TV. In contrast, TV was significantly augmented in the absence of PD-1 on BEC-specific CD8(+) T cells. Taken together, these results indicate that antigen distribution in the vascular bed determines the impact of coinhibition and, as a consequence, critically impinges on T cell-mediated vascular immunopathology.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Células Endoteliales/inmunología , Rechazo de Injerto/inmunología , Trasplante de Corazón , Antígenos de Histocompatibilidad Menor/inmunología , Enfermedades Vasculares/inmunología , Aloinjertos , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/patología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Rechazo de Injerto/genética , Rechazo de Injerto/metabolismo , Rechazo de Injerto/patología , Ratones , Ratones Noqueados , Antígenos de Histocompatibilidad Menor/biosíntesis , Antígenos de Histocompatibilidad Menor/genética , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Enfermedades Vasculares/genética , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patologíaRESUMEN
Although the spleen is a major site where immune tolerance to circulating innocuous antigens occurs, the kidney also contributes. Circulating antigens smaller than albumin are constitutively filtered and concentrated in the kidney and reach the renal lymph node by lymphatic drainage, where resident dendritic cells (DCs) capture them and induce tolerance of specific cytotoxic T cells through unknown mechanisms. Here, we found that the coinhibitory cell surface receptor programmed death 1 (PD-1) on cytotoxic T cells mediates to their tolerance. Renal lymph node DCs of the CD8(+) XCR1(+) subset, which depend on the transcription factor Batf3, expressed the PD-1 cognate ligand PD-L1. Batf3-dependent DCs in the renal lymph node presented antigen that had been concentrated in the kidney and used PD-L1 to induce apoptosis of cytotoxic T cells. In contrast, T cell tolerance in the spleen was independent of PD-1, PD-L1, and Batf3. In summary, these results clarify how the kidney/renal lymph node system tolerizes the immune system against circulating innocuous antigens.
Asunto(s)
Antígenos/inmunología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Células Dendríticas/inmunología , Tolerancia Inmunológica/inmunología , Riñón/inmunología , Ganglios Linfáticos/inmunología , Proteínas Represoras/metabolismo , Animales , Antígenos/sangre , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Células Dendríticas/metabolismo , Riñón/metabolismo , Ganglios Linfáticos/metabolismo , Ratones , Ratones Mutantes , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Proteínas Represoras/genética , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismoRESUMEN
Cross-presentation of antigen by dendritic cells (DCs) to CD8(+) T cells is a fundamentally important mechanism in the defense against pathogens and tumors. Due to the lack of an appropriate lineage marker, cross-presenting DCs in the mouse are provisionally classified as "Batf3-IRF-8-Id2-dependent DCs" or as "CD8(+) DCs" in the spleen, and as "CD103(+)CD11b(-) DCs" in the periphery. We have now generated a mAb to XCR1, a chemokine receptor which is specifically expressed on CD8(+) DCs and a subpopulation of double negative DCs in the spleen. Using this antibody, we have determined that only XCR1(+)CD8(+) (around 80% of CD8(+) DCs) and their probable precursors, XCR1(+)CD8(-) DCs, efficiently take up cellular material and excel in antigen cross-presentation. In lymph nodes (LNs) and peripheral tissues, XCR1(+) DCs largely, but not fully, correspond to CD103(+)CD11b(-) DCs. Most importantly, we demonstrate that XCR1(+) DCs in the spleen, LNs, and peripheral tissues are dependent on the growth factor Flt3 ligand and are selectively absent in Batf3-deficient animals. These results provide evidence that expression of XCR1 throughout the body defines the Batf3-dependent lineage of DCs with a special capacity to cross-present antigen. XCR1 thus emerges as the first surface marker characterizing a DC lineage in the mouse and potentially also in the human.
RESUMEN
We have established a comprehensive in vivo mouse model for the CD4(+) T cell response to an "innocuous" versus "dangerous" exogenous Ag and developed an in vivo test for tolerance. In this model, specific gene-expression signatures, distinctive upregulation of early T cell-communication molecules, and differential expansion of effector T cells (Teff) and regulatory T cells (Treg) were identified as central correlates of T cell tolerance and T cell immunity. Different from essentially all other T cell-activation molecules, ICOS was found to be induced in the immunity response and not by T cells activated under tolerogenic conditions. If expressed, ICOS did not act as a general T cell costimulator but selectively caused a massive expansion of effector CD4(+) T cells, leaving the regulatory CD4(+) T cell compartment largely undisturbed. Thus, ICOS strongly contributed to the dramatic change in the balance between Ag-specific Teff and Treg from â¼1:1 at steady state to 21:1 at the height of the immune response. This newly defined role for the balance of Teff to Treg, together with its known key function in T cell help for B cells, establishes ICOS as a central mediator of immunity. Given its exceptionally selective induction on CD4(+) T cells under inflammatory, but not tolerogenic, conditions, ICOS emerges as a pivotal effector molecule in the early decision between tolerance and immunity to exogenous Ag.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Tolerancia Inmunológica , Proteína Coestimuladora de Linfocitos T Inducibles/fisiología , Inmunidad Adaptativa/genética , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Tolerancia Inmunológica/genética , Proteína Coestimuladora de Linfocitos T Inducibles/deficiencia , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismoRESUMEN
Follicular T-helper (T(FH)) cells cooperate with GL7(+)CD95(+) germinal center (GC) B cells to induce antibody maturation. Herein, we identify the transcription factor IRF4 as a T-cell intrinsic precondition for T(FH) cell differentiation and GC formation. After immunization with protein or infection with the protozoon Leishmania major, draining lymph nodes (LNs) of IFN-regulatory factor-4 (Irf4(-/-)) mice lacked GCs and GC B cells despite developing normal initial hyperplasia. GCs were also absent in Peyer's patches of naive Irf4(-/-) mice. Accordingly, CD4(+) T cells within the LNs and Peyer's patches failed to express the T(FH) key transcription factor B-cell lymphoma-6 and other T(FH)-related molecules. During chronic leishmaniasis, the draining Irf4(-/-) LNs disappeared because of massive cell death. Adoptive transfer of WT CD4(+) T cells or few L. major primed WT T(FH) cells reconstituted GC formation, GC B-cell differentiation, and LN cell survival. In support of a T-cell intrinsic IRF4 activity, Irf4(-/-) T(FH) cell differentiation was not rescued by close neighborhood to transferred WT T(FH) cells. Together with its known B lineage-specific roles during plasma cell maturation and class switch, our study places IRF4 in the center of antibody production toward T-cell-dependent antigens.