Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunol ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320215

RESUMEN

G protein-coupled receptors (GPCRs) represent the largest family of surface receptors and are responsible for key physiological functions, including cell growth, neurotransmission, hormone release, and cell migration. The GPCR 56 (GPR56), encoded by ADGRG1, is an adhesion GPCR found on diverse cell types, including neural progenitor cells, melanoma cells, and lymphocytes, such as effector memory T cells, γδ T cells, and NK cells. Using RNA-sequencing and high-resolution flow cytometry, we found that GPR56 mRNA and protein expression increased with NK cell differentiation, reaching its peak in adaptive NK cells. Small interfering RNA silencing of GPR56 led to increased spontaneous and chemokine-induced migration, suggesting that GPR56 functions as an upstream checkpoint for migration of highly differentiated NK cells. Increased NK cell migration could also be induced by agonistic stimulation of GPR56 leading to rapid internalization and deactivation of the receptor. Mechanistically, GPR56 ligation and downregulation were associated with transcriptional coactivator with PDZ-binding motif translocation to the nucleus and increased actin polymerization. Together, these data provide insights into the role of GPR56 in the migratory behavior of human NK cell subsets and may open possibilities to improve NK cell infiltration into cancer tissues by releasing a migratory checkpoint.

2.
Cell Stem Cell ; 31(9): 1376-1386.e8, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38981470

RESUMEN

Allogeneic cellular immunotherapies hold promise for broad clinical implementation but face limitations due to potential rejection of donor cells by the host immune system. Silencing of beta-2 microglobulin (B2M) expression is commonly employed to evade T cell-mediated rejection by the host, although the absence of B2M is expected to trigger missing-self responses by host natural killer (NK) cells. Here, we demonstrate that genetic deletion of the adhesion ligands CD54 and CD58 in B2M-deficient chimeric antigen receptor (CAR) T cells and multi-edited induced pluripotent stem cell (iPSC)-derived CAR NK cells reduces their susceptibility to rejection by host NK cells in vitro and in vivo. The absence of adhesion ligands limits rejection in a unidirectional manner in B2M-deficient and B2M-sufficient settings without affecting the antitumor functionality of the engineered donor cells. Thus, these data suggest that genetic ablation of adhesion ligands effectively alleviates rejection by host immune cells, facilitating the implementation of universal immunotherapy.


Asunto(s)
Células Asesinas Naturales , Animales , Ratones , Ligandos , Células Asesinas Naturales/inmunología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones Endogámicos C57BL , Rechazo de Injerto/inmunología , Inmunoterapia/métodos , Antígenos CD58/metabolismo , Antígenos CD58/genética , Humanos , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Molécula 1 de Adhesión Intercelular/metabolismo
3.
DNA Repair (Amst) ; 12(12): 1159-64, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23755964

RESUMEN

Base excision repair is the major pathway for removal of oxidative DNA base damage. This pathway is initiated by DNA glycosylases, which recognize and excise damaged bases from DNA. In this work, we have purified the glycosylase domain (GD) of human DNA glycosylase NEIL3. The substrate specificity has been characterized and we have elucidated the catalytic mechanisms. GD NEIL3 excised the hydantoin lesions spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh) in single-stranded (ss) and double-stranded (ds) DNA efficiently. NEIL3 also removed 5-hydroxy-2'-deoxycytidine (5OHC) and 5-hydroxy-2'-deoxyuridine (5OHU) in ssDNA, but less efficiently than hydantoins. Unlike NEIL1 and NEIL2, which possess a ß,δ-elimination activity, NEIL3 mainly incised damaged DNA by ß-elimination. Further, the base excision and strand incision activities of NEIL3 exhibited a non-concerted action, indicating that NEIL3 mainly operate as a monofunctional DNA glycosylase. The site-specific NEIL3 mutant V2P, however, showed a concerted action, suggesting that the N-terminal amino group in Val2 is critical for the monofunctional modus. Finally, we demonstrated that residue Lys81 is essential for catalysis.


Asunto(s)
ADN Glicosilasas/metabolismo , ADN/metabolismo , Guanidinas/metabolismo , Guanosina/análogos & derivados , Hidantoínas/metabolismo , N-Glicosil Hidrolasas/metabolismo , Compuestos de Espiro/metabolismo , Dominio Catalítico , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , ADN Glicosilasas/química , Reparación del ADN , Guanosina/metabolismo , Humanos , Lisina/genética , Mutación , N-Glicosil Hidrolasas/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
4.
Proc Natl Acad Sci U S A ; 108(46): 18802-7, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22065741

RESUMEN

Neural stem/progenitor cell proliferation and differentiation are required to replace damaged neurons and regain brain function after hypoxic-ischemic events. DNA base lesions accumulating during hypoxic-ischemic stress are removed by DNA glycosylases in the base-excision repair pathway to prevent cytotoxicity and mutagenesis. Expression of the DNA glycosylase endonuclease VIII-like 3 (Neil3) is confined to regenerative subregions in the embryonic and perinatal brains. Here we show profound neuropathology in Neil3-knockout mice characterized by a reduced number of microglia and loss of proliferating neuronal progenitors in the striatum after hypoxia-ischemia. In vitro expansion of Neil3-deficient neural stem/progenitor cells revealed an inability to augment neurogenesis and a reduced capacity to repair for oxidative base lesions in single-stranded DNA. We propose that Neil3 exercises a highly specialized function through accurate molecular repair of DNA in rapidly proliferating cells.


Asunto(s)
Endodesoxirribonucleasas/genética , Hipoxia/genética , Isquemia/genética , Animales , Diferenciación Celular , Proliferación Celular , Daño del ADN , ADN de Cadena Simple , Endodesoxirribonucleasas/metabolismo , Hidantoínas/metabolismo , Ratones , Ratones Noqueados , Mitosis , Células-Madre Neurales/citología , Neurogénesis , Células Madre/citología
5.
Protein Expr Purif ; 65(2): 160-4, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19121397

RESUMEN

The base excision repair (BER) pathway is mainly responsible for the repair of a vast number of non-bulky lesions produced by alkylation, oxidation or deamination of bases. DNA glycosylases are the key enzymes that recognize damaged bases and initiate BER by catalyzing the cleavage of the N-glycosylic bond between the base and the sugar. Many of the mammalian DNA glycosylases have been identified by a combination of biochemical and bioinformatics analysis. Thus, a mammalian family of three proteins (NEIL1, NEIL2 and NEIL3) that showed homology to the Escherichia coli Fpg/Nei DNA glycosylases was identified. Two of the proteins, NEIL1 and NEIL2 have been thoroughly characterized and shown to initiate BER of a diverse number of oxidized lesions. However, much less is known about NEIL3. The biochemical properties of NEIL3 have not been elucidated. This is mainly due to the difficulty in the expression and purification of NEIL3. Here, we describe the expression and partial purification of full-length human NEIL3 and the expression, purification and characterization of a truncated human core-NEIL3 (amino acids 1-301) that contains the complete E. coli Fpg/Nei-like domain but lacks the C-terminal region.


Asunto(s)
N-Glicosil Hidrolasas/biosíntesis , N-Glicosil Hidrolasas/aislamiento & purificación , Alquilación , Secuencia de Aminoácidos , Clonación Molecular , Reparación del ADN , Humanos , Datos de Secuencia Molecular , N-Glicosil Hidrolasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...