Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2401528, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092638

RESUMEN

Printing human tissues and organs replete with biomimetic vascular networks is of growing interest. While it is possible to embed perfusable channels within acellular and densely cellular matrices, they do not currently possess the biomimetic architectures found in native vessels. Here, coaxial sacrificial writing into functional tissues (co-SWIFT) is developed, an embedded bioprinting method capable of generating hierarchically branching, multilayered vascular networks within both granular hydrogel and densely cellular matrices. Coaxial printheads are designed with an extended core-shell configuration to facilitate robust core-core and shell-shell interconnections between printed branching vessels during embedded bioprinting. Using optimized core-shell ink combinations, biomimetic vessels composed of a smooth muscle cell-laden shell that surrounds perfusable lumens are coaxially printed into granular matrices composed of: 1) transparent alginate microparticles, 2) sacrificial microparticle-laden collagen, or 3) cardiac spheroids derived from human induced pluripotent stem cells. Biomimetic blood vessels that exhibit good barrier function are produced by seeding these interconnected lumens with a confluent layer of endothelial cells. Importantly, it is found that co-SWIFT cardiac tissues mature under perfusion, beat synchronously, and exhibit a cardio-effective drug response in vitro. This advance opens new avenues for the scalable biomanufacturing of vascularized organ-specific tissues for drug testing, disease modeling, and therapeutic use.

2.
Biofabrication ; 16(4)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189069

RESUMEN

Recent years have seen the creation and popularization of various complexin vitromodels (CIVMs), such as organoids and organs-on-chip, as a technology with the potential to reduce animal usage in pharma while also enhancing our ability to create safe and efficacious drugs for patients. Public awareness of CIVMs has increased, in part, due to the recent passage of the FDA Modernization Act 2.0. This visibility is expected to spur deeper investment in and adoption of such models. Thus, end-users and model developers alike require a framework to both understand the readiness of current models to enter the drug development process, and to assess upcoming models for the same. This review presents such a framework for model selection based on comparative -omics data (which we term model-omics), and metrics for qualification of specific test assays that a model may support that we term context-of-use (COU) assays. We surveyed existing healthy tissue models and assays for ten drug development-critical organs of the body, and provide evaluations of readiness and suggestions for improving model-omics and COU assays for each. In whole, this review comes from a pharma perspective, and seeks to provide an evaluation of where CIVMs are poised for maximum impact in the drug development process, and a roadmap for realizing that potential.


Asunto(s)
Organoides , Humanos , Animales , Organoides/efectos de los fármacos , Organoides/metabolismo , Evaluación Preclínica de Medicamentos , Industria Farmacéutica
3.
Biofabrication ; 16(4)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38906132

RESUMEN

The ability to controllably perfuse kidney organoids would better recapitulate the native tissue microenvironment for applications ranging from drug testing to therapeutic use. Here, we report a perfusable, vascularized kidney organoid on chip model composed of two individually addressable channels embedded in an extracellular matrix (ECM). The channels are respectively seeded with kidney organoids and human umbilical vein endothelial cells that form a confluent endothelium (macrovessel). During perfusion, endogenous endothelial cells present within the kidney organoids migrate through the ECM towards the macrovessel, where they form lumen-on-lumen anastomoses that are supported by stromal-like cells. Once micro-macrovessel integration is achieved, we introduced fluorescently labeled dextran of varying molecular weight and red blood cells into the macrovessel, which are transported through the microvascular network to the glomerular epithelia within the kidney organoids. Our approach for achieving controlled organoid perfusion opens new avenues for generating other perfused human tissues.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Riñón , Organoides , Perfusión , Organoides/citología , Humanos , Riñón/citología , Riñón/irrigación sanguínea , Dispositivos Laboratorio en un Chip , Animales , Ingeniería de Tejidos/métodos , Matriz Extracelular/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(35): e2305322120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603766

RESUMEN

T cell bispecific antibodies (TCBs) are the focus of intense development for cancer immunotherapy. Recently, peptide-MHC (major histocompatibility complex)-targeted TCBs have emerged as a new class of biotherapeutics with improved specificity. These TCBs simultaneously bind to target peptides presented by the polymorphic, species-specific MHC encoded by the human leukocyte antigen (HLA) allele present on target cells and to the CD3 coreceptor expressed by human T lymphocytes. Unfortunately, traditional models for assessing their effects on human tissues often lack predictive capability, particularly for "on-target, off-tumor" interactions. Here, we report an immune-infiltrated, kidney organoid-on-chip model in which peripheral blood mononuclear cells (PBMCs) along with nontargeting (control) or targeting TCB-based tool compounds are circulated under flow. The target consists of the RMF peptide derived from the intracellular tumor antigen Wilms' tumor 1 (WT1) presented on HLA-A2 via a bivalent T cell receptor-like binding domain. Using our model, we measured TCB-mediated CD8+ T cell activation and killing of RMF-HLA-A2-presenting cells in the presence of PBMCs and multiple tool compounds. DP47, a non-pMHC-targeting TCB that only binds to CD3 (negative control), does not promote T cell activation and killing. Conversely, the nonspecific ESK1-like TCB (positive control) promotes CD8+ T cell expansion accompanied by dose-dependent T cell-mediated killing of multiple cell types, while WT1-TCB* recognizing the RMF-HLA-A2 complex with high specificity, leads solely to selective killing of WT1-expressing cells within kidney organoids under flow. Our 3D kidney organoid model offers a platform for preclinical testing of cancer immunotherapies and investigating tissue-immune system interactions.


Asunto(s)
Anticuerpos Biespecíficos , Humanos , Antígeno HLA-A2 , Leucocitos Mononucleares , Riñón , Organoides
5.
Am J Physiol Cell Physiol ; 324(3): C757-C768, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36745528

RESUMEN

Kidney organoids cultured on adherent matrices in the presence of superfusate flow generate vascular networks and exhibit more mature podocyte and tubular compartments compared with static controls (Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, Miyoshi T, Mau D, Valerius MT, Ferrante T, Bonventre JV, Lewis JA, Morizane R. Nat Methods 16: 255-262, 2019; Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Chuva de Sousa Lopes SM, Little MH. Nature 526: 564-568, 2015.). However, their physiological function has yet to be systematically investigated. Here, we measured mechano-induced changes in intracellular Ca2+ concentration ([Ca2+]i) in tubules isolated from organoids cultured for 21-64 days, microperfused in vitro or affixed to the base of a specimen chamber, and loaded with fura-2 to measure [Ca2+]i. A rapid >2.5-fold increase in [Ca2+]i from a baseline of 195.0 ± 22.1 nM (n = 9; P ≤ 0.001) was observed when microperfused tubules from organoids >40 days in culture were subjected to luminal flow. In contrast, no response was detected in tubules isolated from organoids <30 days in culture. Nonperfused tubules (41 days) subjected to a 10-fold increase in bath flow rate also exhibited a threefold increase in [Ca2+]i from baseline (P < 0.001). Mechanosensitive PIEZO1 channels contribute to the flow-induced [Ca2+]i response in mouse distal tubule (Carrisoza-Gaytan R, Dalghi MG, Apodaca GL, Kleyman TR, Satlin LM. The FASEB J 33: 824.25, 2019.). Immunodetectable apical and basolateral PIEZO1 was identified in tubular structures by 21 days in culture. Basolateral PIEZO1 appeared to be functional as basolateral exposure of nonperfused tubules to the PIEZO1 activator Yoda 1 increased [Ca2+]i (P ≤ 0.001) in segments from organoids cultured for >30 days, with peak [Ca2+]i increasing with advancing days in culture. These results are consistent with a maturational increase in number and/or activity of flow/stretch-sensitive Ca2+ channels, including PIEZO1, in tubules of static organoids in culture.


Asunto(s)
Señalización del Calcio , Calcio , Túbulos Renales , Animales , Ratones , Calcio/metabolismo , Fura-2 , Canales Iónicos/metabolismo , Riñón/metabolismo , Túbulos Renales/metabolismo
6.
Sci Adv ; 8(38): eabq0866, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36129975

RESUMEN

Organoids serve as a novel tool for disease modeling in three-dimensional multicellular contexts. Static organoids, however, lack the requisite biophysical microenvironment such as fluid flow, limiting their ability to faithfully recapitulate disease pathology. Here, we unite organoids with organ-on-a-chip technology to unravel disease pathology and develop therapies for autosomal recessive polycystic kidney disease. PKHD1-mutant organoids-on-a-chip are subjected to flow that induces clinically relevant phenotypes of distal nephron dilatation. Transcriptomics discover 229 signal pathways that are not identified by static models. Mechanosensing molecules, RAC1 and FOS, are identified as potential therapeutic targets and validated by patient kidney samples. On the basis of this insight, we tested two U.S. Food and Drug Administration-approved and one investigational new drugs that target RAC1 and FOS in our organoid-on-a-chip model, which suppressed cyst formation. Our observations highlight the vast potential of organoid-on-a-chip models to elucidate complex disease mechanisms for therapeutic testing and discovery.


Asunto(s)
Riñón Poliquístico Autosómico Recesivo , Descubrimiento de Drogas , Drogas en Investigación , Humanos , Dispositivos Laboratorio en un Chip , Organoides/metabolismo , Riñón Poliquístico Autosómico Recesivo/genética , Riñón Poliquístico Autosómico Recesivo/metabolismo , Riñón Poliquístico Autosómico Recesivo/patología
7.
Adv Mater ; 34(26): e2200217, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35451188

RESUMEN

The ability to replicate the 3D myocardial architecture found in human hearts is a grand challenge. Here, the fabrication of aligned cardiac tissues via bioprinting anisotropic organ building blocks (aOBBs) composed of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) is reported. A bioink composed of contractile cardiac aOBBs is first generated and aligned cardiac tissue sheets with linear, spiral, and chevron features are printed. Next, aligned cardiac macrofilaments are printed, whose contractile force and conduction velocity increase over time and exceed the performance of spheroid-based cardiac tissues. Finally, the ability to spatially control the magnitude and direction of contractile force by printing cardiac sheets with different aOBB alignment is highlighted. This research opens new avenues to generating functional cardiac tissue with high cell density and complex cellular alignment.


Asunto(s)
Bioimpresión , Células Madre Pluripotentes Inducidas , Humanos , Miocardio , Miocitos Cardíacos , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido
8.
Nat Methods ; 16(3): 255-262, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30742039

RESUMEN

Kidney organoids derived from human pluripotent stem cells have glomerular- and tubular-like compartments that are largely avascular and immature in static culture. Here we report an in vitro method for culturing kidney organoids under flow on millifluidic chips, which expands their endogenous pool of endothelial progenitor cells and generates vascular networks with perfusable lumens surrounded by mural cells. We found that vascularized kidney organoids cultured under flow had more mature podocyte and tubular compartments with enhanced cellular polarity and adult gene expression compared with that in static controls. Glomerular vascular development progressed through intermediate stages akin to those involved in the embryonic mammalian kidney's formation of capillary loops abutting foot processes. The association of vessels with these compartments was reduced after disruption of the endogenous VEGF gradient. The ability to induce substantial vascularization and morphological maturation of kidney organoids in vitro under flow opens new avenues for studies of kidney development, disease, and regeneration.


Asunto(s)
Riñón/irrigación sanguínea , Organoides/crecimiento & desarrollo , Células Cultivadas , Fibroblastos/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Técnicas In Vitro , Dispositivos Laboratorio en un Chip , Técnicas de Cultivo de Órganos , Impresión Tridimensional , Ingeniería de Tejidos
9.
Sci Adv ; 4(8): eaat1659, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30182058

RESUMEN

Droplet-based printing methods are widely used in applications ranging from biological microarrays to additive manufacturing. However, common approaches, such as inkjet or electrohydrodynamic printing, are well suited only for materials with low viscosity or specific electromagnetic properties, respectively. While in-air acoustophoretic forces are material-independent, they are typically weak and have yet to be harnessed for printing materials. We introduce an acoustophoretic printing method that enables drop-on-demand patterning of a broad range of soft materials, including Newtonian fluids, whose viscosities span more than four orders of magnitude (0.5 to 25,000 mPa·s) and yield stress fluids (τ0 > 50 Pa). By exploiting the acoustic properties of a subwavelength Fabry-Perot resonator, we have generated an accurate, highly localized acoustophoretic force that can exceed the gravitational force by two orders of magnitude to eject microliter-to-nanoliter volume droplets. The versatility of acoustophoretic printing is demonstrated by patterning food, optical resins, liquid metals, and cell-laden biological matrices in desired motifs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...