Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Physiol ; 597(4): 1045-1058, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29660141

RESUMEN

KEY POINTS: Carbonic anhydrase (CA) inhibitors such as acetazolamide inhibit hypoxic pulmonary vasoconstriction (HPV) in humans and other mammals, but the mechanism of this action remains unknown. It has been postulated that carbonic anhydrase may act as a nitrous anhydrase in vivo to generate nitric oxide (NO) from nitrite and that this formation is increased in the presence of acetazolamide. Acetazolamide reduces HPV in pigs without evidence of any NO generation, whereas nebulized sodium nitrite reduces HPV by NO formation; however; combined infusion of acetazolamide with sodium nitrite inhalation did not further increase exhaled NO concentration over inhaled nitrite alone in pigs exposed to alveolar hypoxia. We conclude that acetazolamide does not function as either a nitrous anhydrase or a nitrite reductase in the lungs of pigs, and probably other mammals, to explain its vasodilating actions in the pulmonary or systemic circulations. ABSTRACT: The carbonic anhydrase (CA) inhibitors acetazolamide and its structurally similar analogue methazolamide prevent or reduce hypoxic pulmonary vasoconstriction (HPV) in dogs and humans in vivo, by a mechanism unrelated to CA inhibition. In rodent blood and isolated blood vessels, it has been reported that inhibition of CA leads to increased generation of nitric oxide (NO) from nitrite and vascular relaxation in vitro. We tested the physiological relevance of augmented NO generation by CA from nitrite with acetazolamide in anaesthetized pigs during alveolar hypoxia in vivo. We found that acetazolamide prevents HPV in anaesthetized pigs, as in other mammalian species. A single nebulization of sodium nitrite reduces HPV, but this action wanes in the succeeding 3 h of hypoxia as nitrite is metabolized and excreted. Pulmonary artery pressure reduction and NO formation as measured by exhaled gas concentration from inhaled sodium nitrite were not increased by acetazolamide during alveolar hypoxia. Thus, our data argue against a physiological role of carbonic anhydrase as a nitrous anhydrase or nitrite reductase as a mechanism for its inhibition of HPV in the lung and blood in vivo.


Asunto(s)
Vasos Sanguíneos/metabolismo , Anhidrasas Carbónicas/metabolismo , Pulmón/irrigación sanguínea , Óxido Nítrico/metabolismo , Vasoconstricción , Acetazolamida/farmacología , Animales , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/fisiología , Inhibidores de Anhidrasa Carbónica/farmacología , Masculino , Óxido Nitroso/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Porcinos
2.
J Vis Exp ; (115)2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27684585

RESUMEN

Various animal models of lung injury exist to study the complex pathomechanisms of human acute respiratory distress syndrome (ARDS) and evaluate future therapies. Severe lung injury with a reproducible deterioration of pulmonary gas exchange and hemodynamics can be induced in anesthetized pigs using repeated lung lavages with warmed 0.9% saline (50 ml/kg body weight). Including standard respiratory and hemodynamic monitoring with clinically applied devices in this model allows the evaluation of novel therapeutic strategies (drugs, modern ventilators, extracorporeal membrane oxygenators, ECMO), and bridges the gap between bench and bedside. Furthermore, induction of lung injury with lung lavages does not require the injection of pathogens/endotoxins that impact on measurements of pro- and anti-inflammatory cytokines. A disadvantage of the model is the high recruitability of atelectatic lung tissue. Standardization of the model helps to avoid pitfalls, to ensure comparability between experiments, and to reduce the number of animals needed.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome de Dificultad Respiratoria/terapia , Animales , Lavado Broncoalveolar , Humanos , Pulmón , Tensoactivos , Porcinos , Irrigación Terapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...