Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Allergy ; 77(11): 3408-3425, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690994

RESUMEN

BACKGROUND: Antibody-based tests are available for measuring SARS-CoV-2-specific immune responses but fast T-cell assays remain scarce. Robust T cell-based tests are needed to differentiate specific cellular immune responses after infection from those after vaccination. METHODS: One hundred seventeen individuals (COVID-19 convalescent patients: n = 40; SARS-CoV-2 vaccinees: n = 41; healthy controls: n = 36) were evaluated for SARS-CoV-2-specific cellular immune responses (proliferation, Th1, Th2, Th17, and inflammatory cytokines, activation-induced marker [AIM] expression) by incubating purified peripheral blood mononuclear cells (PBMC) or whole blood (WB) with SARS-CoV-2 peptides (S, N, or M), vaccine antigens (tetanus toxoid, tick borne encephalitis virus) or polyclonal stimuli (Staphylococcal enterotoxin, phytohemagglutinin). RESULTS: N-peptide mix stimulation of WB identified the combination of IL-2 and IL-13 secretion as superior to IFN-γ secretion to discriminate between COVID-19-convalescent patients and healthy controls (p < .0001). Comparable results were obtained with M- or S-peptides, the latter almost comparably recalled IL-2, IFN-γ, and IL-13 responses in WB of vaccinees. Analysis 10 months as opposed to 10 weeks after COVID-19, but not allergic disease status, positively correlated with IL-13 recall responses. WB cytokine responses correlated with cytokine and proliferation responses of PBMC. Antigen-induced neo-expression of the C-type lectin CD69 on CD4+ (p < .0001) and CD8+ (p = .0002) T cells informed best about the SARS-CoV-2 exposure status with additional benefit coming from CD25 upregulation. CONCLUSION: Along with N- and S-peptide-induced IL-2 and CD69 neo-expression, we suggest to include the type 2 cytokine IL-13 as T-cellular recall marker for SARS-CoV-2 specific T-cellular immune responses after infection and vaccination.


Asunto(s)
COVID-19 , Leucocitos Mononucleares , Humanos , Citocinas/metabolismo , Inmunidad Celular , Interleucina-13 , Interleucina-2 , Leucocitos Mononucleares/metabolismo , SARS-CoV-2 , Vacunación
3.
Allergy ; 77(1): 230-242, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34453317

RESUMEN

BACKGROUND: The determinants of successful humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of critical importance for the design of effective vaccines and the evaluation of the degree of protective immunity conferred by exposure to the virus. As novel variants emerge, understanding their likelihood of suppression by population antibody repertoires has become increasingly important. METHODS: In this study, we analyzed the SARS-CoV-2 polyclonal antibody response in a large population of clinically well-characterized patients after mild and severe COVID-19 using a panel of microarrayed structurally folded and unfolded SARS-CoV-2 proteins, as well as sequential peptides, spanning the surface spike protein (S) and the receptor-binding domain (RBD) of the virus. RESULTS: S- and RBD-specific antibody responses were dominated by immunoglobulin G (IgG), mainly IgG1 , and directed against structurally folded S and RBD and three distinct peptide epitopes in S2. The virus neutralization activity of patients´ sera was highly correlated with IgG antibodies specific for conformational but not sequential RBD epitopes and their ability to prevent RBD binding to its human receptor angiotensin-converting enzyme 2 (ACE2). Twenty percent of patients selectively lacked RBD-specific IgG. Only immunization with folded, but not with unfolded RBD, induced antibodies against conformational epitopes with high virus-neutralizing activity. Conformational RBD epitopes required for protection do not seem to be altered in the currently emerging virus variants. CONCLUSION: These results are fundamental for estimating the protective activity of antibody responses after natural infection or vaccination and for the design of vaccines, which can induce high levels of SARS-CoV-2-neutralizing antibodies conferring sterilizing immunity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Epítopos , Humanos , Glicoproteína de la Espiga del Coronavirus/genética
4.
Immunobiology ; 218(9): 1155-1165, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23790497

RESUMEN

The major turnip (Brassica rapa) pollen allergen, belongs to a family of calcium-binding proteins (i.e., two EF-hand proteins), which occur as highly cross-reactive allergens in pollen of weeds, grasses and trees. In this study, the IgE binding capacity and allergenic activity of three recombinant allergen variants containing mutations in their calcium-binding sites were analyzed in sensitized patients with the aim to identify the most suitable hypoallergenic molecule for specific immunotherapy. Analysis of the wildtype allergen and the mutants regarding IgE reactivity and activation of basophils in allergic patients indicated that the allergen derivative mutated in both calcium-binding domains had the lowest allergenic activity. Gel filtration and circular dichroism experiments showed that both, the wildtype and the double mutant, occurred as dimers in solution and assumed alpha-helical fold, respectively. However, both fold and thermal stability were considerably reduced in the double mutant. The use of bioinformatic tools for evaluation of the solvent accessibility and charge distribution suggested that the reduced IgE reactivity and different structural properties of the double mutant may be due to a loss of negatively charged amino acids on the surface. Interestingly, immunization of rabbits showed that only the double mutant but not the wildtype allergen induced IgG antibodies which recognized the allergen and blocked binding of allergic patients IgE. Due to the extensive structural similarity and cross-reactivity between calcium-binding pollen allergens the hypoallergenic double mutant may be useful not only for immunotherapy of turnip pollen allergy, but also for the treatment of allergies to other two EF-hand pollen allergens.


Asunto(s)
Basófilos/efectos de los fármacos , Brassica rapa/inmunología , Proteínas de Unión al Calcio/inmunología , Proteínas de Unión al Calcio/uso terapéutico , Desensibilización Inmunológica/métodos , Proteínas de Plantas/inmunología , Proteínas de Plantas/uso terapéutico , Rinitis Alérgica Estacional/terapia , Adulto , Alérgenos/genética , Alérgenos/inmunología , Alérgenos/uso terapéutico , Secuencia de Aminoácidos , Animales , Formación de Anticuerpos/efectos de los fármacos , Antígenos de Plantas/genética , Antígenos de Plantas/uso terapéutico , Basófilos/inmunología , Proteínas de Unión al Calcio/genética , Degranulación de la Célula/efectos de los fármacos , Células Cultivadas , Reacciones Cruzadas , Femenino , Humanos , Inmunoglobulina E/metabolismo , Masculino , Datos de Secuencia Molecular , Mutación/genética , Proteínas de Plantas/genética , Polen/efectos adversos , Polen/inmunología , Conformación Proteica , Ingeniería de Proteínas , Conejos , Rinitis Alérgica Estacional/inmunología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...