Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
2.
J Clin Med ; 10(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884173

RESUMEN

Liver cirrhosis has been associated with an increased risk of coronary artery disease and clinical complications following percutaneous coronary revascularization. The present study is based on the hypothesis that cirrhosis may influence intimal hyperplasia following PCI. Sera from 10 patients with alcoholic liver cirrhosis and 10 age-matched healthy controls were used to stimulate cultured human coronary artery smooth muscle cells (HCASMC) for 48 h. HCASMC proliferation, migration, gene expression and apoptosis were investigated. Serum concentrations of growth factors and markers of liver function were also determined in patients and healthy controls. Treatment of HCASMC with patient sera reduced cell proliferation and migration (p < 0.05 vs. healthy controls), whereas apoptosis was unaffected (p = 0.160). Expression of genes associated with a synthetic vascular smooth muscle cell phenotype was decreased in cells stimulated with serum from cirrhotic patients (RBP1, p = 0.001; SPP1, p = 0.003; KLF4, p = 0.004). Platelet-derived growth factor-BB serum concentrations were lower in patients (p = 0.001 vs. controls). The results suggest the presence of circulating factors in patients with alcoholic liver cirrhosis affecting coronary smooth muscle cell growth. These findings may have implications for clinical outcomes following percutaneous coronary revascularization in these patients.

3.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34298930

RESUMEN

(1) Background: Non-alcoholic fatty liver disease (NAFLD) is a growing global health problem. NAFLD progression involves a complex interplay of imbalanced inflammatory cell populations and inflammatory signals such as reactive oxygen species and cytokines. These signals can derive from the liver itself but also from adipose tissue or be mediated via changes in the gut microbiome. We analyzed the effects of a simultaneous migration blockade caused by L-selectin-deficiency and an enhancement of the anti-oxidative stress response triggered by hepatocytic Kelch-like ECH-associated protein 1 (Keap1) deletion on NAFLD progression. (2) Methods: L-selectin-deficient mice (Lsel-/-Keap1flx/flx) and littermates with selective hepatic Keap1 deletion (Lsel-/-Keap1Δhepa) were compared in a 24-week Western-style diet (WD) model. (3) Results: Lsel-/-Keap1Δhepa mice exhibited increased expression of erythroid 2-related factor 2 (Nrf2) target genes in the liver, decreased body weight, reduced epidydimal white adipose tissue with decreased immune cell frequencies, and improved glucose response when compared to their Lsel-/-Keap1flx/flx littermates. Although WD feeding caused drastic changes in fecal microbiota profiles with decreased microbial diversity, no genotype-dependent shifts were observed. (4) Conclusions: Upregulation of the anti-oxidative stress response improves metabolic changes in L-selectin-deficient mice but does not prevent NAFLD progression and shifts in the gut microbiota.


Asunto(s)
Heces/microbiología , Selectina L/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo/genética , Regulación hacia Arriba/genética , Animales , Dieta Occidental , Microbioma Gastrointestinal/genética , Hepatocitos/metabolismo , Hepatocitos/patología , Proteína 1 Asociada A ECH Tipo Kelch/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética
4.
Cells ; 10(2)2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525493

RESUMEN

Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine with anti-fibrotic properties in toxic liver injury models and anti-steatotic functions in non-alcoholic fatty liver disease (NAFLD) attributed to the CD74/AMPK signaling pathway. As NAFLD progression is associated with fibrosis, we studied MIF function during NAFLD-associated liver fibrogenesis in mice and men by molecular, histological and immunological methods in vitro and in vivo. After NASH diet feeding, hepatic Mif expression was strongly induced, an effect which was absent in Mif∆hep mice. In contrast to hepatotoxic fibrosis models, NASH diet-induced fibrogenesis was significantly abrogated in Mif-/- and Mif∆hep mice associated with a reduced accumulation of the pro-fibrotic type-I NKT cell subpopulation. In vitro, MIF skewed the differentiation of NKT cells towards the type-I subtype. In line with the murine results, expression of fibrosis markers strongly correlated with MIF, its receptors, and markers of NKT type-I cells in NASH patients. We conclude that MIF expression is induced during chronic metabolic injury in mice and men with hepatocytes representing the major source. In NAFLD progression, MIF contributes to liver fibrogenesis skewing NKT cell polarization toward a pro-fibrotic phenotype highlighting the complex, context-dependent role of MIF during chronic liver injury.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos/metabolismo , Células T Asesinas Naturales/inmunología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Biomarcadores/metabolismo , Polaridad Celular , Dieta , Progresión de la Enfermedad , Fibrosis , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Enfermedad del Hígado Graso no Alcohólico/genética , Receptores Inmunológicos/metabolismo
5.
Front Med (Lausanne) ; 8: 814496, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087852

RESUMEN

The Transregional Collaborative Research Center "Organ Fibrosis: From Mechanisms of Injury to Modulation of Disease" (referred to as SFB/TRR57) was funded for 13 years (2009-2021) by the German Research Council (DFG). This consortium was hosted by the Medical Schools of the RWTH Aachen University and Bonn University in Germany. The SFB/TRR57 implemented combined basic and clinical research to achieve detailed knowledge in three selected key questions: (i) What are the relevant mechanisms and signal pathways required for initiating organ fibrosis? (ii) Which immunological mechanisms and molecules contribute to organ fibrosis? and (iii) How can organ fibrosis be modulated, e.g., by interventional strategies including imaging and pharmacological approaches? In this review we will summarize the liver-related key findings of this consortium gained within the last 12 years on these three aspects of liver fibrogenesis. We will highlight the role of cell death and cell cycle pathways as well as nutritional and iron-related mechanisms for liver fibrosis initiation. Moreover, we will define and characterize the major immune cell compartments relevant for liver fibrogenesis, and finally point to potential signaling pathways and pharmacological targets that turned out to be suitable to develop novel approaches for improved therapy and diagnosis of liver fibrosis. In summary, this review will provide a comprehensive overview about the knowledge on liver fibrogenesis and its potential therapy gained by the SFB/TRR57 consortium within the last decade. The kidney-related research results obtained by the same consortium are highlighted in an article published back-to-back in Frontiers in Medicine.

6.
Cells ; 9(5)2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365632

RESUMEN

CD62L (L-Selectin) dependent lymphocyte infiltration is known to induce inflammatory bowel disease (IBD), while its function in the liver, especially in non-alcoholic steatohepatitis (NASH), remains unclear. We here investigated the functional role of CD62L in NASH in humans as well as in two mouse models of steatohepatitis. Hepatic expression of a soluble form of CD62L (sCD62L) was measured in patients with steatosis and NASH. Furthermore, CD62L-/- mice were fed with a methionine and choline deficient (MCD) diet for 4 weeks or with a high fat diet (HFD) for 24 weeks. Patients with NASH displayed increased serum levels of sCD62L. Hepatic CD62L expression was higher in patients with steatosis and increased dramatically in NASH patients. Interestingly, compared to wild type (WT) mice, MCD and HFD-treated CD62L-/- mice were protected from diet-induced steatohepatitis. This was reflected by less fat accumulation in hepatocytes and a dampened manifestation of the metabolic syndrome with an improved insulin resistance and decreased cholesterol and triglyceride levels. Consistent with ameliorated disease, CD62L-/- animals exhibited an enhanced hepatic infiltration of Treg cells and a strong activation of an anti-oxidative stress response. Those changes finally resulted in less fibrosis in CD62L-/- mice. Additionally, this effect could be reproduced in a therapeutic setting by administrating an anti-CD62L blocking antibody. CD62L expression in humans and mice correlates with disease activity of steatohepatitis. CD62L knockout and anti-CD62L-treated mice are protected from diet-induced steatohepatitis suggesting that CD62L is a promising target for therapeutic interventions in NASH.


Asunto(s)
Hepatocitos/patología , Selectina L/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL
7.
Front Physiol ; 10: 770, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293441

RESUMEN

Non-alcoholic steatohepatitis (NASH) is the leading cause of chronic liver injury and the third most common reason for liver transplantations in Western countries. It is unclear so far how different fat sources in Western diets (WD) influence the development of NASH. Our study investigates the impact of non-trans fat (NTF) and corn oil (Corn) as fat source in a WD mouse model of steatohepatitis on disease development and progression. C57BL/6J wildtype (WT) mice were fed "standard" WD (WD-Std), WD-NTF or WD-Corn for 24 weeks. WT animals treated with WD-NTF exhibit distinct features of the metabolic syndrome compared to WD-Std and WD-Corn. This becomes evident by a worsened insulin resistance and elevated serum ALT, cholesterol and triglyceride (TG) levels compared to WD-Corn. Animals fed WD-Corn on the contrary tend to a weakened disease progression in the described parameters. After 24 weeks feeding with WD-NTF and WD-Std, WD-Corn lead to a comparable steatohepatitis initiation by histomorphological changes and immune cell infiltration compared to WD-Std. Immune cell infiltration results in a significant increase in mRNA expression of the pro-inflammatory cytokines IL-6 and TNF-α, which is more pronounced in WD-NTF compared to WD-Std and WD-Corn. Interestingly the fat source has no impact on the composition of accumulating fat within liver tissue as determined by matrix-assisted laser desorption/ionization mass spectrometry imaging of multiple lipid classes. The described effects of different fat sources on the development of steatohepatitis finally resulted in variations in fibrosis development. Animals treated with WD-NTF displayed massive collagen accumulation, whereas WD-Corn even seems to protect from extracellular matrix deposition. Noteworthy, WD-Corn provokes massive histomorphological modifications in epididymal white adipose tissue (eWAT) and severe accumulation of extracellular matrix which are not apparent in WD-Std and WD-NTF treatment. Different fat sources in WD-Std contribute to strong steatohepatitis development in WT mice after 24 weeks treatment. Surprisingly, corn oil provokes histomorphological changes in eWAT tissue. Accordingly, both WD-NTF and WD-Corn appear suitable as alternative dietary treatment to replace "standard" WD-Std as a diet mouse model of steatohepatitis whereas WD-Corn leads to strong changes in eWAT morphology.

8.
Front Physiol ; 10: 326, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30971954

RESUMEN

Platelet factor 4 (PF4) is a pleiotropic inflammatory chemokine, which has been implicated in various inflammatory disorders including liver fibrosis. However, its role in acute liver diseases has not yet been elucidated. Here we describe an unexpected, anti-inflammatory role of PF4. Serum concentrations of PF4 were measured in patients and mice with acute liver diseases. Acute liver injury in mice was induced either by carbon tetrachloride or by D-galactosamine hydrochloride and lipopolysaccharide. Serum levels of PF4 were decreased in patients and mice with acute liver diseases. PF4-/- mice displayed increased liver damage in both models compared to control which was associated with increased apoptosis of hepatocytes and an enhanced pro-inflammatory response of liver macrophages. In this experimental setting, PF4-/- mice were unable to generate activated Protein C (APC), a protein with anti-inflammatory activities on monocytes/macrophages. In vitro, PF4 limited the activation of liver resident macrophages. Hence, the systemic application of PF4 led to a strong amelioration of experimental liver injury. Along with reduced liver injury, PF4 improved the severity of the pro-inflammatory response of liver macrophages and induced increased levels of APC. PF4 has a yet unidentified direct anti-inflammatory effect in two models of acute liver injury. Thus, attenuation of acute liver injury by systemic administration of PF4 might offer a novel therapeutic approach for acute liver diseases.

9.
Front Pharmacol ; 10: 244, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949049

RESUMEN

Infiltrating CD4 and CD8 T cells have been shown to worsen inflammatory liver damage in non-alcoholic steatohepatitis (NASH). Inhibitory T cell receptors such as the programmed cell death protein 1 (PD1) and the natural killer cell receptor 2B4 regulate the activity of CD4 and CD8 T cells and therefore play an important role in immune tolerance required in the liver. In this study, we investigated the expression profile of inhibitory T cell receptors on CD4 and CD8 T cells in a mouse model of NASH. Male B57BL/6J mice were fed a Western diet for 24 weeks. The expression levels of inhibitory receptors on the surface of intrahepatic and peripheral T cells were measured and correlated with markers of activation (CD107a, CD69, and CD44), metabolic disorder (serum triglycerides, serum cholesterol, γ-glutamyl transferase, hepatic triglycerides), inflammation (serum alanine aminotransferase and aspartate aminotransferase) and hepatic fibrosis (collagen 1A1, α-smooth muscle actin, hydroxyproline). Under Western diet, PD1 is exclusively upregulated on intrahepatic and peripheral CD8+ T cells, whereas the expression level on CD4 T cells is unaffected. In contrast, 2B4 is upregulated liver-specifically on both CD4 and CD8 T cells and unchanged on peripheral T cells. Upregulation of PD1 on CD8 T cells is restricted to CD8 effector memory T cells and correlates with lower levels of degranulation. Similarly, the inhibitory function of PD1 on intrahepatic CD4 T cells is shown by a lower CD69 and CD44 expression on PD1-positive CD4 T cells. In murine steatohepatitis, the upregulation of PD1 on CD8 T cells and 2B4 on CD4 and CD8 T cells potentially limits T cell-mediated liver damage. Therefore, these inhibitory T cell receptors could serve as promising targets of immune-modulatory NASH therapy.

10.
Nat Med ; 25(4): 641-655, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30936549

RESUMEN

Non-alcoholic fatty liver disease ranges from steatosis to non-alcoholic steatohepatitis (NASH), potentially progressing to cirrhosis and hepatocellular carcinoma (HCC). Here, we show that platelet number, platelet activation and platelet aggregation are increased in NASH but not in steatosis or insulin resistance. Antiplatelet therapy (APT; aspirin/clopidogrel, ticagrelor) but not nonsteroidal anti-inflammatory drug (NSAID) treatment with sulindac prevented NASH and subsequent HCC development. Intravital microscopy showed that liver colonization by platelets depended primarily on Kupffer cells at early and late stages of NASH, involving hyaluronan-CD44 binding. APT reduced intrahepatic platelet accumulation and the frequency of platelet-immune cell interaction, thereby limiting hepatic immune cell trafficking. Consequently, intrahepatic cytokine and chemokine release, macrovesicular steatosis and liver damage were attenuated. Platelet cargo, platelet adhesion and platelet activation but not platelet aggregation were identified as pivotal for NASH and subsequent hepatocarcinogenesis. In particular, platelet-derived GPIbα proved critical for development of NASH and subsequent HCC, independent of its reported cognate ligands vWF, P-selectin or Mac-1, offering a potential target against NASH.


Asunto(s)
Plaquetas/metabolismo , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Animales , Plaquetas/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Citocinas/metabolismo , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/metabolismo , Endotelio/efectos de los fármacos , Endotelio/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Macrófagos del Hígado/efectos de los fármacos , Macrófagos del Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones Transgénicos , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Recuento de Plaquetas
11.
FASEB J ; 33(5): 6035-6044, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30726111

RESUMEN

Sepsis represents a major health problem worldwide because of high mortality rates and cost-intensive therapy. Immunomodulatory strategies as a means of controlling overshooting inflammatory responses during sepsis have thus far not been effective, and there is a general paucity of new therapies. Regulatory immune cells have been shown to play important roles in limiting systemic inflammation. However, the signals inducing a regulatory phenotype in myeloid cells during infection are unknown. Here, we report that myeloid cell-intrinsic glycoprotein 130 (gp130) signals constitute a critical element for immune homeostasis during polymicrobial sepsis. We identify an essential role for gp130 signaling in myeloid cells during M2 macrophage polarization in vitro and in vivo. Myeloid cell-specific deletion of gp130 signaling leads to a defective M2 macrophage polarization followed by exacerbated inflammatory responses and increased mortality during sepsis. These data provide new insights into the molecular basis of M1 and M2 phenotypic dichotomy and identify gp130 as a key regulator of immune homeostasis during sepsis. Our study highlights the Janus-faced role of IL-6 family cytokines during inflammation, which may explain the failure of IL-6-targeted anti-inflammatory approaches in the treatment of sepsis.-Sackett, S. D., Otto, T., Mohs, A., Sander, L. E., Strauch, S., Streetz, K. L., Kroy, D. C., Trautwein, C. Myeloid cells require gp130 signaling for protective anti-inflammatory functions during sepsis.


Asunto(s)
Receptor gp130 de Citocinas/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Células Mieloides/metabolismo , Sepsis/metabolismo , Animales , Citocinas/metabolismo , Células Madre Hematopoyéticas/citología , Homeostasis , Humanos , Sistema Inmunológico , Interleucina-10/metabolismo , Activación de Macrófagos , Ratones , Ratones Noqueados , Fenotipo , Proteínas Recombinantes/metabolismo , Transducción de Señal
12.
Oxid Med Cell Longev ; 2018: 6957497, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30538805

RESUMEN

Nonalcoholic steatohepatitis (NASH) is the most common chronic, progressive liver disease in Western countries. The significance of cellular interactions of the HGF/c-Met axis in different liver cell subtypes and its relation to the oxidative stress response remains unclear so far. Hence, the present study is aimed at investigating the role of c-Met and the interaction with the oxidative stress response during NASH development in mice and humans. Conditional c-Met knockout (KO) lines (LysCre for Kupffer cells/macrophages, GFAPCre for α-SMA+ and CK19+ cells and MxCre for bone marrow-derived immune cells) were fed chow and either methionine-choline-deficient diet (MCD) for 4 weeks or high-fat diet (HFD) for 24 weeks. Mice lacking c-Met either in Kupffer cells, α-SMA+ and CK19+ cells, or bone marrow-derived immune cells displayed earlier and faster progressing steatohepatitis during dietary treatments. Severe fatty liver degeneration and histomorphological changes were accompanied by an increased infiltration of immune cells and a significant upregulation of inflammatory cytokine expression reflecting an earlier initiation of steatohepatitis development. In addition, animals with a cell-type-specific deletion of c-Met exhibited a strong generation of reactive oxygen species (ROS) by dihydroethidium (hydroethidine) (DHE) staining showing a significant increase in the oxidative stress response especially in LysCre/c-Metmut and MxCre/c-Metmut animals. All these changes finally lead to earlier and stronger fibrosis progression with strong accumulation of collagen within liver tissue of mice deficient for c-Met in different liver cell types. The HGF/c-Met signaling pathway prevents from steatosis development and has a protective function in the progression to steatohepatitis and fibrosis. It conveys an antifibrotic role independent on which cell type c-Met is missing (Kupffer cells/macrophages, α-SMA+ and CK19+ cells, or bone marrow-derived immune cells). These results highlight a global protective capacity of c-Met in NASH development and progression.


Asunto(s)
Cirrosis Hepática/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo/fisiología , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Progresión de la Enfermedad , Técnicas de Inactivación de Genes , Hepatocitos/metabolismo , Humanos , Macrófagos del Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal/fisiología
14.
J Hepatol ; 69(4): 896-904, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29886156

RESUMEN

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are increasingly a cause of cirrhosis and hepatocellular carcinoma globally. This burden is expected to increase as epidemics of obesity, diabetes and metabolic syndrome continue to grow. The goal of this analysis was to use a Markov model to forecast NAFLD disease burden using currently available data. METHODS: A model was used to estimate NAFLD and NASH disease progression in eight countries based on data for adult prevalence of obesity and type 2 diabetes mellitus (DM). Published estimates and expert consensus were used to build and validate the model projections. RESULTS: If obesity and DM level off in the future, we project a modest growth in total NAFLD cases (0-30%), between 2016-2030, with the highest growth in China as a result of urbanization and the lowest growth in Japan as a result of a shrinking population. However, at the same time, NASH prevalence will increase 15-56%, while liver mortality and advanced liver disease will more than double as a result of an aging/increasing population. CONCLUSIONS: NAFLD and NASH represent a large and growing public health problem and efforts to understand this epidemic and to mitigate the disease burden are needed. If obesity and DM continue to increase at current and historical rates, both NAFLD and NASH prevalence are expected to increase. Since both are reversible, public health campaigns to increase awareness and diagnosis, and to promote diet and exercise can help manage the growth in future disease burden. LAY SUMMARY: Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis can lead to advanced liver disease. Both conditions are becoming increasingly prevalent as the epidemics of obesity and diabetes continue to increase. A mathematical model was built to understand how the disease burden associated with non-alcoholic fatty liver disease and non-alcoholic steatohepatitis will change over time. Results suggest increasing cases of advanced liver disease and liver-related mortality in the coming years.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/epidemiología , China/epidemiología , Costo de Enfermedad , Diabetes Mellitus Tipo 2/epidemiología , Humanos , Hepatopatías/etiología , Cadenas de Markov , Modelos Teóricos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/economía , Obesidad/epidemiología , Prevalencia , Factores de Tiempo
15.
Case Rep Gastroenterol ; 12(1): 76-84, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29606940

RESUMEN

Clostridium difficile infection (CDI) represents one of the most common healthcare-associated infections. Due to increasing numbers of recurrences and therapy failures, CDI has become a major disease burden. Studies have shown that fecal microbiota transplantation (FMT) can both be a safe and highly efficacious therapy for patients with therapy-refractory CDI. However, patients undergoing solid organ transplantation are at high risk for CDI due to long-term immunosuppression, previous antibiotic therapy, and proton pump inhibitor use. Additionally, these patients may be especially prone to adverse events related to FMT. Here, we report a successful FMT in a patient with severe therapy-refractory CDI after liver transplantation.

16.
BMC Anesthesiol ; 18(1): 29, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523082

RESUMEN

BACKGROUND: The discrepancy between demand and supply for liver transplants (LT) has led to an increased transplantation of organs from extended criteria donors (ECD). METHODS: In this single center retrospective analysis of 122 cadaveric LT recipients, we investigated predictors of postreperfusion syndrome (PRS) including transplant liver quality categorized by both histological assessment of steatosis and subjective visual assessment by the transplanting surgeon using multivariable regression analysis. Furthermore, we describe the relevance of PRS during the intraoperative and postoperative course of LT recipients. RESULTS: 53.3% (n = 65) of the patients suffered from PRS. Risk factors for PRS were visually assessed organ quality of the liver grafts (acceptable: OR 12.2 [95% CI 2.43-61.59], P = 0.002; poor: OR 13.4 [95% CI 1.48-121.1], P = 0.02) as well as intraoperative norepinephrine dosage before reperfusion (OR 2.2 [95% CI 1.26-3.86] per 0.1 µg kg- 1 min- 1, P = 0.01). In contrast, histological assessment of the graft was not associated with PRS. LT recipients suffering from PRS were hemodynamically more instable after reperfusion compared to recipients not suffering from PRS. They had lower mean arterial pressures until the end of surgery (P < 0.001), received more epinephrine and norepinephrine before reperfusion (P = 0.02 and P < 0.001, respectively) as well as higher rates of continuous infusion of norepinephrine (P < 0.001) and vasopressin (P = 0.02) after reperfusion. Postoperative peak AST was significantly higher (P = 0.001) in LT recipients with PRS. LT recipients with intraoperative PRS had more postoperative adverse cardiac events (P = 0.05) and suffered more often from postoperative delirium (P = 0.04). CONCLUSIONS: Patients receiving ECD liver grafts are especially prone to PRS. Anesthesiologists should keep these newly described risk factors in mind when preparing for reperfusion in patients receiving high-risk organs.


Asunto(s)
Trasplante de Hígado , Hígado/fisiopatología , Hígado/cirugía , Complicaciones Posoperatorias/fisiopatología , Daño por Reperfusión/fisiopatología , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/diagnóstico , Daño por Reperfusión/diagnóstico , Daño por Reperfusión/etnología , Estudios Retrospectivos , Factores de Riesgo , Síndrome
17.
Eur Surg Res ; 58(5-6): 330-340, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29073598

RESUMEN

BACKGROUND: Liver regeneration requires the formation of new blood vessels. Endothelial cell proliferation is stimulated by vascular endothelial growth factor (VEGF) and its receptor tyrosine kinase VEGFR-2. The aim of this study was to investigate VEGFR-2 expression in vivo during liver regeneration after partial hepatectomy (PHx). METHODS: Transgenic VEGFR-2-luc mice were used in which the luciferase reporter gene was under control of the VEGFR-2 promoter. Following 2/3 PHx, the mice underwent in vivo bioluminescence imaging until the 14th postoperative day. Additionally, liver tissue was analyzed by immunohistochemistry, in vitro luminescence assays, and quantitative RT-PCR. RESULTS: In vivo bioluminescence imaging showed a significant increase in VEGFR-2 promoter activity after PHx. Maximum signal was recorded on the 3rd day; 8 days postoperatively the signal intensity decreased significantly. On the 14th day, bioluminescence signal reached almost baseline levels. Immunohistochemistry, quantitative RT-PCR, and in vitro luminescence confirmed a significant increase on the 3rd day following resection. The mRNA expression of VEGFR-2 was significantly higher on day 3 than preoperatively as well as on day 8. CONCLUSION: In vivo bioluminescence imaging with transgenic VEGFR-2-luc mice is feasible and provides a convenient model for noninvasively studying VEGFR-2 expression during liver regeneration. This may facilitate further experiments with modulation of angiogenesis by different substances.


Asunto(s)
Regeneración Hepática , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Femenino , Hepatectomía , Mediciones Luminiscentes , Masculino , Ratones Transgénicos
18.
BMJ Open ; 7(10): e017558, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29018070

RESUMEN

INTRODUCTION: Orthotopic liver transplantation (OLT) has emerged as the mainstay of treatment for end-stage liver disease. In an attempt to improve the availability of donor allografts and reduce waiting list mortality, graft acceptance criteria were extended increasingly over the decades. The use of extended criteria donor (ECD) allografts is associated with a higher incidence of primary graft non-function and/or delayed graft function. As such, several strategies have been developed aiming at reconditioning poor quality ECD liver allografts. Hypothermic oxygenated machine perfusion (HOPE) has been successfully tested in preclinical experiments and in few clinical series of donation after cardiac death OLT. METHODS AND ANALYSIS: HOPE ECD-DBD is an investigator-initiated, open-label, phase-II, prospective multicentre randomised controlled trial on the effects of HOPE on ECD allografts in donation after brain death (DBD) OLT. Human whole organ liver grafts will be submitted to 1-2 hours of HOPE (n=23) via the portal vein before implantation and are going to be compared with a control group (n=23) of patients transplanted after conventional cold storage. Primary (peak and Δ peak alanine aminotransferase within 7 days) and secondary (aspartate aminotransferase, bilirubin and international normalised ratio, postoperative complications, early allograft dysfunction, duration of hospital and intensive care unit stay, 1-year patient and graft survival) endpoints will be analysed within a 12-month follow-up. Extent of ischaemia-reperfusion (I/R) injury will be assessed using liver tissue, perfusate, bile and serum samples taken during the perioperative phase of OLT. ETHICS AND DISSEMINATION: The study was approved by the institutional review board of the RWTH Aachen University, Aachen, Germany (EK 049/17). The current paper represent the pre-results phase. First results are expected in 2018. TRIAL REGISTRATION NUMBER: NCT03124641.


Asunto(s)
Aloinjertos , Muerte Encefálica , Supervivencia de Injerto , Trasplante de Hígado , Hígado , Oxígeno , Donantes de Tejidos , Adolescente , Adulto , Anciano , Enfermedad Hepática en Estado Terminal/cirugía , Femenino , Humanos , Hígado/patología , Hígado/cirugía , Masculino , Persona de Mediana Edad , Perfusión , Estudios Prospectivos , Obtención de Tejidos y Órganos , Adulto Joven
19.
Am J Case Rep ; 18: 777-781, 2017 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-28694422

RESUMEN

BACKGROUND Graft-site candidiasis rarely develops in solid organ transplant recipients; however, severe life-threatening complications can occur. We report the course of 3 solid organ transplant recipients developing graft-site candidiasis. CASE REPORT All grafts, consisting of 2 kidneys and 1 liver, were procured from a single donor. Patient data were collected from our database. Candida albicans was isolated from a swab taken during multiple-organ recovery. Complications associated with candidiasis occurred in all 3 recipients with preservation of the liver transplant. Both renal transplant recipients had vascular complications, eventually resulting in graft nephrectomy and subsequent return to dialysis. The patients recovered completely without residual effects of their prior fungal infection. CONCLUSIONS Fungal infections in solid organ transplant recipients are rare. Since the sequelae of these infections are serious and usually pertain to more than 1 recipient at a time, antifungal prophylaxis may be warranted in select donors.


Asunto(s)
Candidiasis/etiología , Trasplante de Riñón/efectos adversos , Trasplante de Hígado/efectos adversos , Receptores de Trasplantes , Adulto , Candida albicans/aislamiento & purificación , Femenino , Supervivencia de Injerto , Humanos , Persona de Mediana Edad , Nefrectomía
20.
Oxid Med Cell Longev ; 2017: 3420286, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28676836

RESUMEN

We have recently shown that hepatocyte-specific c-met deficiency accelerates the progression of nonalcoholic steatohepatitis in experimental murine models resulting in augmented production of reactive oxygen species and accelerated development of fibrosis. The aim of this study focuses on the elucidation of the underlying cellular mechanisms driven by Nrf2 overactivation in hepatocytes lacking c-met receptor characterized by a severe unbalance between pro-oxidant and antioxidant functions. Control mice (c-metfx/fx), single c-met knockouts (c-metΔhepa), and double c-met/Keap1 knockouts (met/Keap1Δhepa) were then fed a chow or a methionine-choline-deficient (MCD) diet, respectively, for 4 weeks to reproduce the features of nonalcoholic steatohepatitis. Upon MCD feeding, met/Keap1Δhepa mice displayed increased liver mass albeit decreased triglyceride accumulation. The marked increase of oxidative stress observed in c-metΔhepa was restored in the double mutants as assessed by 4-HNE immunostaining and by the expression of genes responsible for the generation of free radicals. Moreover, double knockout mice presented a reduced amount of liver-infiltrating cells and the exacerbation of fibrosis progression observed in c-metΔhepa livers was significantly inhibited in met/Keap1Δhepa. Therefore, genetic activation of the antioxidant transcription factor Nrf2 improves liver damage and repair in hepatocyte-specific c-met-deficient mice mainly through restoring a balance in the cellular redox homeostasis.


Asunto(s)
Hepatocitos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Proto-Oncogénicas c-met/deficiencia , Animales , Progresión de la Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...