Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221604

RESUMEN

Thiophene derivatives have become integral to OLEDs, photovoltaics, and photodynamic therapy research. A deeper understanding of their excited state dynamics and electronic relaxation mechanisms is expected to provide important physical insights of direct relevance for these applications. In this study, thianaphthene (TN), 2-methylbenzothiophene (2MBT), and 3-methylbenzothiophene (3MBT) are investigated using femtosecond broadband transient absorption and steady-state spectroscopy techniques along with time-dependent density functional calculations in cyclohexane and acetonitrile. The photophysical properties and electronic relaxation mechanisms of these derivatives are elucidated. Small fluorescence quantum yields ranging from 0.4 to 1.1% are measured. It is demonstrated that excitation of TN at 290 nm leads primarily to intersystem crossing to the triplet manifold with a lifetime of 400 ± 15 ps in either solvent, whereas four- to twofold shorter intersystem crossing lifetimes are measured for 2MBT and 3MBT depending on whether cyclohexane or acetonitrile is used. Linear interpolation of internal coordinates evidence that elongation of the S-C bonds enables ultrafast intersystem crossing in these thiophene derivatives involving singlet and triplet states with ππ* and πσ* characters. Excitation at 266 nm results in an additional 5 ± 1 ps lifetime, which is assigned to intramolecular vibrational relaxation dynamics occurring in the excited singlet state.

2.
Chemistry ; : e202402721, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185738

RESUMEN

Thiophene polycyclic derivatives are widely used in organic light-emitting diodes, photovoltaics, and medicinal chemistry applications. Understanding the electronic and structural factors controlling their intersystem crossing rates is paramount for these applications to be successful. This study investigates the photophysical, electronic structure, and excited state dynamics of 1,2-benzodiphenylene sulfide, benzo[b]naphtho[1,2-d]thiophene, and benzo[b]naphtho[2,3-d]thiophene in polar aprotic and non-polar solvents. Steady-state absorption and emission spectroscopy, femtosecond transient absorption spectroscopy, and DFT and TD-DFT calculations are employed. Low fluorescence quantum yields of 1.2 to 2.7% are measured in acetonitrile and cyclohexene, evidencing that the primary relaxation pathways in these thiophene derivatives are nonradiative. Linear interpolation of internal coordinates calculations predict that an S-C bond elongation reaction coordinate facilitates the efficient intersystem crossing to the T1 state. Excitation of 1,2-benzodiphenylene sulfide and benzo[b]naphtho[1,2-d]thiophene at 350 nm or benzo[b]naphtho[2,3-d]thiophene at 365 nm, populates the lowest-energy 1ππ* state, which relaxes to the 1ππ* minimum in tens of picoseconds or intersystem crosses to the triplet manifold in ca. 500 ps to 1.1 ns depending on the position at which the benzene rings are added. Excitation at 266 nm does not affect the intersystem crossing rates. Laser photodegradation experiments demonstrate that the thiophene polycyclic derivatives are highly photostable.

3.
Mol Ther Nucleic Acids ; 35(2): 102171, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38549913

RESUMEN

Nucleoside-modified messenger RNA (mRNA) technologies necessarily incorporate N1-methylpseudouridine into the mRNA molecules to prevent the over-stimulation of cytoplasmic RNA sensors. Despite this modification, mRNA concentrations remain mostly determined through the measurement of UV absorbance at 260 nm wavelength (A260). Herein, we report that the N1-methylpseudouridine absorbs approximately 40% less UV light at 260 nm than uridine, and its incorporation into mRNAs leads to the under-estimation of nucleoside-modified mRNA concentrations, with 5%-15% error, in an mRNA-sequence-dependent manner. We therefore examined the RNA quantification methods and developed the mRNACalc webserver. It accounts for the molar absorption coefficient of modified nucleotides at 260 nm wavelength, the RNA composition of the mRNA, and the A260 of the mRNA sample to enable accurate quantification of nucleoside-modified mRNAs.

4.
J Phys Chem Lett ; 14(48): 10856-10862, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38032072

RESUMEN

5-Methylcytidine (5mCyd) has recently been investigated with renewed interest in its utilization in mRNA therapeutics. However, its photostability following exposure to electromagnetic radiation has been overlooked. This Letter compares the photostability and excited-state dynamics of 5mCyd with those of the canonical RNA nucleoside, cytidine (Cyd), using steady-state and femtosecond transient absorption spectroscopy under physiologic conditions. 5mCyd is shown to have a 5-fold higher fluorescence yield and a 5-fold longer 1ππ* excited-state decay lifetime. Importantly, however, the excited-state population in 5mCyd decays primarily by internal conversion, with a photodegradation rate 3 times smaller than that in Cyd. In Cyd, the population of a 1nπ* state with a lifetime of ca. 45 ps is implicated in the formation 6-hydroxycytidine and other photoproducts.


Asunto(s)
Citidina , Nucleósidos , ARN Mensajero , Citidina/química , ARN
5.
J Phys Chem B ; 127(26): 5924-5932, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37347972

RESUMEN

Polycyclic aromatic sulfur heterocycles are environmental pollutants formed from incomplete combustion processes and crude oil spills. Their excited state dynamics are not understood. Herein, femtosecond transient absorption is combined with steady-state spectroscopy and computational methods to elucidate the relaxation mechanisms of three dibenzothiophene derivatives. The low-energy singlet and triplet states all have ππ* character in the Franck-Condon region, and two minima were located in the S1 surface. Excitation at 320 nm populates their S1 state directly, which relaxes with lifetimes ranging from 4 to 13 ps. Most of the S1 population undergoes efficient intersystem crossing to the triplet state with lifetimes ranging from 820 ± 50 to 900 ± 30 ps. The compounds exhibit negligible nonradiative internal conversion, low fluorescence yields of 1.2 to 1.6%, and triplet yields of ca. 98%. Linear interpolation of internal coordinates reveals the chemical basis for relaxing the spin-forbidden intersystem crossing in these π-aromatic systems.

6.
Photochem Photobiol ; 99(2): 693-705, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35938218

RESUMEN

The guanine derivative, 5-aza-7-deazaguanine (5N7C G) has recently been proposed as one of four unnatural bases, termed Hachimoji (8-letter) to expand the genetic code. We apply steady-state and time-resolved spectroscopy to investigate its electronic relaxation mechanism and probe the effect of atom substitution on the relaxation mechanism in polar protic and polar aprotic solvents. Mapping of the excited state potential energy surfaces is performed, from which the critical points are optimized by using the state-of-art extended multi-state complete active space second-order perturbation theory. It is demonstrated that excitation to the lowest energy 1 ππ* state of 5N7C G results in complex dynamics leading to ca. 10- to 30-fold slower relaxation (depending on solvent) compared with guanine. A significant conformational change occurs at the S1 minimum, resulting in a 10-fold greater fluorescence quantum yield compared with guanine. The fluorescence quantum yield and S1 decay lifetime increase going from water to acetonitrile to propanol. The solvent-dependent results are supported by the quantum chemical calculations showing an increase in the energy barrier between the S1 minimum and the S1 /S0 conical intersection going from water to propanol. The longer lifetimes might make 5N7C G more photochemically active to adjacent nucleobases than guanine or other nucleobases within DNA.


Asunto(s)
Guanina , Agua , Solventes , Agua/química , Propanoles
7.
J Phys Chem Lett ; 13(8): 2000-2006, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35191712

RESUMEN

Oxo and amino substituted purines and pyrimidines have been suggested as protonucleobases participating in ancient pre-RNA forms. Considering electromagnetic radiation as a key environmental selection pressure on early Earth, the investigation of the photophysics of modified nucleobases is crucial to determine their viability as nucleobases' ancestors and to understand the factors that rule the photostability of natural nucleobases. In this Letter, we combine femtosecond transient absorption spectroscopy and quantum mechanical simulations to reveal the photochemistry of 4-pyrimidinone, a close relative of uracil. Irradiation of 4-pyrimidinone with ultraviolet radiation populates the S1(ππ*) state, which decays to the vibrationally excited ground state in a few hundred femtoseconds. Analysis of the postirradiated sample in water reveals the formation of a 6-hydroxy-5H-photohydrate and 3-(N-(iminomethyl)imino)propanoic acid as the primary photoproducts. 3-(N-(Iminomethyl)imino)propanoic acid originates from the hydrolysis of an unstable ketene species generated from the C4-N3 photofragmentation of the pyrimidine core.


Asunto(s)
ARN , Rayos Ultravioleta , ADN/química , Pirimidinas/química , ARN/efectos de la radiación
8.
Chemistry ; 28(6): e202103667, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-34875113

RESUMEN

N1 -Methylation of pseudouridine (m1 ψ) replaces uridine (Urd) in several therapeutics, including the Moderna and BioNTech-Pfizer COVID-19 vaccines. Importantly, however, it is currently unknown if exposure to electromagnetic radiation can affect the chemical integrity and intrinsic stability of m1 ψ. In this study, the photochemistry of m1 ψ is compared to that of uridine by using photoirradiation at 267 nm, steady-state spectroscopy, and quantum-chemical calculations. Furthermore, femtosecond transient absorption measurements are collected to delineate the electronic relaxation mechanisms for both nucleosides under physiologically relevant conditions. It is shown that m1 ψ exhibits a 12-fold longer 1 ππ* decay lifetime than uridine and a 5-fold higher fluorescence yield. Notably, however, the experimental results also demonstrate that most of the excited state population in both molecules decays back to the ground state in an ultrafast time scale and that m1 ψ is 6.7-fold more photostable than Urd following irradiation at 267 nm.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , Uridina , Vacunas Sintéticas , Vacunas de ARNm
9.
J Chem Phys ; 154(7): 075103, 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33607894

RESUMEN

Minor structural modifications to the DNA and RNA nucleobases have a significant effect on their excited state dynamics and electronic relaxation pathways. In this study, the excited state dynamics of 7-deazaguanosine and guanosine 5'-monophosphate are investigated in aqueous solution and in a mixture of methanol and water using femtosecond broadband transient absorption spectroscopy following excitation at 267 nm. The transient spectra are collected using photon densities that ensure no parasitic multiphoton-induced signal from solvated electrons. The data can be fit satisfactorily using a two- or three-component kinetic model. By analyzing the results from steady-state, time-resolved, computational calculations, and the methanol-water mixture, the following general relaxation mechanism is proposed for both molecules, Lb → La → 1πσ*(ICT) → S0, where the 1πσ*(ICT) stands for an intramolecular charge transfer excited singlet state with significant πσ* character. In general, longer lifetimes for internal conversion are obtained for 7-deazaguanosine compared to guanosine 5'-monophosphate. Internal conversion of the 1πσ*(ICT) state to the ground state occurs on a similar time scale of a few picoseconds in both molecules. Collectively, the results demonstrate that substitution of a single nitrogen atom for a methine (C-H) group at position seven of the guanine moiety stabilizes the 1ππ* Lb and La states and alters the topology of their potential energy surfaces in such a way that the relaxation dynamics in 7-deazaguanosine are slowed down compared to those in guanosine 5'-monophosphate but not for the internal conversion of 1πσ*(ICT) state to the ground state.


Asunto(s)
Guanosina Monofosfato/química , Guanosina/análogos & derivados , Teoría Cuántica , Electrones , Guanosina/química , Cinética , Modelos Moleculares , Conformación Molecular , Termodinámica , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...