RESUMEN
Individuals diagnosed with schizophrenia spectrum disorders (SSDs) often demonstrate alterations in the Theory of Mind Network (ToM-N). Here, in this proof-of-concept, single-arm pilot study, we investigate whether participants with an SSD (N = 7) were able to learn to volitionally control regions of the ToM-N (dorso/middle/ventromedial prefrontal cortex [D/M/VMPFC], left temporoparietal junction [LTPJ], precuneus [PC], right superior temporal sulcus [RSTS], and right temporoparietal junction [RTPJ]) using real-time fMRI neurofeedback (rtfMRI-NF). Region-of-interest analyses demonstrate that after neurofeedback training, participants were able to gain volitional control in the following ToM-N brain regions during the transfer task, where no active feedback was given: right temporoparietal junction, precuneus, and dorso/ventromedial prefrontal cortex (neurofeedback effect Fs > 6.17, ps < .05). These findings suggest that trained volitional control over the ToM-N is tentatively feasible with rtfMRI neurofeedback in SSD, although findings need to be replicated with more robust designs that include a control group and larger samples.
RESUMEN
We recently showed that subjects can learn motion state-dependent changes to motor output (temporal force patterns) based on explicit visual feedback of the equivalent force field (i.e., without the physical perturbation). Here, we examined the spatiotemporal properties of this learning compared with learning based on physical perturbations. There were two human subject groups and two experimental paradigms. One group (n = 40) experienced physical perturbations (i.e., a velocity-dependent force field, vFF), whereas the second (n = 40) was given explicit visual feedback (EVF) of the force-velocity relationship. In the latter, subjects moved in force channels and we provided visual feedback of the lateral force exerted during the movement, as well as the required force pattern based on movement velocity. In the first paradigm (spatial generalization), following vFF or EVF training, generalization of learning was tested by requiring subjects to move to 14 untrained target locations (0° to ±135° around the trained location). In the second paradigm (temporal stability), following training, we examined the decay of learning over eight delay periods (0 to 90 s). Results showed that learning based on EVF did not generalize to untrained directions, whereas the generalization for the vFF was significant for targets ≤ 45° away. In addition, the decay of learning for the EVF group was significantly faster than the FF group (a time constant of 2.72 ± 1.74 s vs. 12.53 ± 11.83 s). Collectively, our results suggest that recalibrating motor output based on explicit motion state information, in contrast to physical disturbances, uses learning mechanisms with limited spatiotemporal properties.NEW & NOTEWORTHY Adjustment of motor output based on limb motion state information can be achieved based on explicit information or from physical perturbations. Here, we investigated the spatiotemporal characteristics of short-term motor learning to determine the properties of the respective learning mechanisms. Our results suggest that adjustments based on physical perturbations are more temporally stable and applied over a greater spatial range than the learning based on explicit visual feedback, suggesting largely separate learning mechanisms.
Asunto(s)
Retroalimentación Sensorial , Desempeño Psicomotor , Humanos , Aprendizaje , Generalización Psicológica , Movimiento , Adaptación FisiológicaRESUMEN
Recent studies have shown that adaptation to visual feedback perturbations during arm reaching movements involves implicit and explicit learning components. Evidence also suggests that explicit, intentional learning mechanisms are largely responsible for savings-a faster recalibration compared with initial training. However, the extent explicit learning mechanisms facilitate learning and early savings (i.e., the rapid recall of previous performance) for motion state-dependent learning is generally unknown. To address this question, we compared the early savings/recall achieved by two groups of human subjects. One experienced physical perturbations (a velocity-dependent force-field, vFF) to promote adaptation that is thought to be a largely implicit process. The second was only given visual feedback of the required force-velocity relationship; subjects moved in force channels and we provided visual feedback of the lateral force exerted during the movement, as well as the required force pattern based on the movement velocity. Thus, subjects were shown explicit information on the extent the applied temporal pattern of force matched the required velocity-dependent force profile if the force-field perturbation had been applied. After training, both groups experienced a decay and washout period, which was followed by a reexposure block to assess early savings/recall. Although decay was faster for the explicit visual feedback group, the single-trial recall was similar to the physical perturbation group. Thus, compared with visual feedback perturbations, conscious modification of motor output based on motion state-dependent feedback demonstrates rapid recall, but this adjustment is less stable than adaptation based on experiencing the multisensory errors that accompany physical perturbations.NEW & NOTEWORTHY The extent explicit feedback facilitates motion state-dependent changes to motor output is largely unknown. Here, we examined motor adaptation for subjects that experienced physical perturbations and another that made adjustments based on explicit visual feedback information of the required force-velocity relationship. Our results suggest that adjustment of motor output can be based on explicit motion state-dependent information and demonstrates rapid recall, but this learning is less stable than adaptation based on physical perturbations to movement.
Asunto(s)
Retroalimentación Sensorial , Desempeño Psicomotor , Adaptación Fisiológica , Humanos , Aprendizaje , MovimientoRESUMEN
Hematopoiesis is a multistage process involving the differentiation of stem and progenitor cells into distinct mature cell lineages. Here we present Haemopedia, an atlas of murine gene-expression data containing 54 hematopoietic cell types, covering all the mature lineages in hematopoiesis. We include rare cell populations such as eosinophils, mast cells, basophils, and megakaryocytes, and a broad collection of progenitor and stem cells. We show that lineage branching and maturation during hematopoiesis can be reconstructed using the expression patterns of small sets of genes. We also have identified genes with enriched expression in each of the mature blood cell lineages, many of which show conserved lineage-enriched expression in human hematopoiesis. We have created an online web portal called Haemosphere to make analyses of Haemopedia and other blood cell transcriptional datasets easier. This resource provides simple tools to interrogate gene-expression-based relationships between hematopoietic cell types and genes of interest.
Asunto(s)
Células Sanguíneas/citología , Células Sanguíneas/metabolismo , Biología Computacional , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/genética , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Análisis por Conglomerados , Biología Computacional/métodos , Perfilación de la Expresión Génica , Humanos , Ratones , Navegador WebRESUMEN
E26 transformation-specific 1 (ETS1) and friend leukemia integration 1 (FLI1) are members of the ETS family of transcription factors, of which there are 28 in humans. Both genes are hemizygous in Jacobsen syndrome, an 11q contiguous gene deletion disorder involving thrombocytopenia, facial dysmorphism, growth and mental retardation, malformation of the heart and other organs, and hearing impairment associated with recurrent ear infections. To determine whether any of these defects are because of hemizygosity for ETS1 and FLI1, we characterized the phenotype of mice heterozygous for mutant alleles of Ets1 and Fli1. Fli1(+/-) mice displayed mild thrombocytopenia, as did Ets1(+/-)Fli1(+/-) animals. Fli1(+/-) and Ets1(+/-)Fli1(+/-) mice also displayed craniofacial abnormalities, including a small middle ear cavity, short nasal bone, and malformed interface between the nasal bone process and cartilaginous nasal septum. They exhibited hearing impairment, otitis media, fusions of ossicles to the middle ear wall, and deformed stapes. Hearing impairment was more penetrant and stapes malformations were more severe in Ets1(+/-)Fli1(+/-) mice than in Fli1(+/-) mice, indicating partial functional redundancy of these transcription factors during auditory development. Our findings indicate that the short nose, otitis media, and hearing impairment in Jacobsen syndrome are likely because of hemizygosity for ETS1 and FLI1.
Asunto(s)
Modelos Animales de Enfermedad , Haploinsuficiencia , Síndrome de Deleción Distal 11q de Jacobsen/genética , Ratones , Proteína Proto-Oncogénica c-ets-1/genética , Proteína Proto-Oncogénica c-fli-1/genética , Animales , Oído Medio/anomalías , Femenino , Genotipo , Pérdida Auditiva/genética , Humanos , Masculino , Ratones/anomalías , Ratones/genética , Hueso Nasal/anomalías , Otitis Media/genética , FenotipoRESUMEN
The transcription factor encoded by the E-twenty-six (ETS)-related gene, ERG, is an essential regulator of hematopoietic stem cell function and a potent human oncoprotein. Enforced expression of ERG in murine hematopoietic cells leads to the development of a well-characterized lymphoid leukemia and a less well-defined non lymphoid disease. To clarify the latter, we generated murine bone marrow chimeras with enforced Erg expression in engrafted hematopoietic progenitor cells. As expected, these mice developed lymphoid leukemia. However, the previously reported non lymphoid disease that developed was shown to be a uniform, transplantable leukemia with both erythroid and megakaryocytic characteristics. In vivo, this disease had the overall appearance of an erythroleukemia, with an accumulation of immature erythroblasts that infiltrated the bone marrow, spleen, liver, and lung. However, when stimulated in vitro, leukemic cell clones exhibited both erythroid and megakaryocytic differentiation, suggesting that transformation occurred in a bipotential progenitor. Thus, in mice, Erg overexpression induces the development of not only lymphoid leukemia but also erythro-megakaryocytic leukemia.
Asunto(s)
Leucemia Megacarioblástica Aguda/genética , Leucemia/genética , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Animales , Células de la Médula Ósea/citología , Diferenciación Celular , Linaje de la Célula , Eritroblastos/metabolismo , Citometría de Flujo/métodos , Regulación Neoplásica de la Expresión Génica , Células Madre Hematopoyéticas/citología , Leucemia/metabolismo , Leucemia Megacarioblástica Aguda/metabolismo , Ratones , Ratones Endogámicos C57BL , Retroviridae/metabolismo , Factores de Tiempo , Factores de Transcripción , Regulador Transcripcional ERGRESUMEN
It is believed that megakaryocytes undergo a specialized form of apoptosis to shed platelets. Conversely, a range of pathophysiological insults, including chemotherapy, are thought to cause thrombocytopenia by inducing the apoptotic death of megakaryocytes and their progenitors. To resolve this paradox, we generated mice with hematopoietic- or megakaryocyte-specific deletions of the essential mediators of apoptosis, Bak and Bax. We found that platelet production was unperturbed. In stark contrast, deletion of the prosurvival protein Bcl-x(L) resulted in megakaryocyte apoptosis and a failure of platelet shedding. This could be rescued by deletion of Bak and Bax. We examined the effect on megakaryocytes of three agents that activate the intrinsic apoptosis pathway in other cell types: etoposide, staurosporine, and the BH3 mimetic ABT-737. All three triggered mitochondrial damage, caspase activation, and cell death. Deletion of Bak and Bax rendered megakaryocytes resistant to etoposide and ABT-737. In vivo, mice with a Bak(-/-) Bax(-/-) hematopoietic system were protected against thrombocytopenia induced by the chemotherapeutic agent carboplatin. Thus, megakaryocytes do not activate the intrinsic pathway to generate platelets; rather, the opposite is true: they must restrain it to survive and progress safely through proplatelet formation and platelet shedding.
Asunto(s)
Apoptosis/fisiología , Plaquetas/metabolismo , Megacariocitos/citología , Megacariocitos/fisiología , Animales , Supervivencia Celular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismoRESUMEN
Fas ligand (FasL), an apoptosis-inducing member of the TNF cytokine family, and its receptor Fas are critical for the shutdown of chronic immune responses and prevention of autoimmunity. Accordingly, mutations in their genes cause severe lymphadenopathy and autoimmune disease in mice and humans. FasL function is regulated by deposition in the plasma membrane and metalloprotease-mediated shedding. Here we generated gene-targeted mice that selectively lack either secreted FasL (sFasL) or membrane-bound FasL (mFasL) to resolve which of these forms is required for cell killing and to explore their hypothesized non-apoptotic activities. Mice lacking sFasL (FasL(Deltas/Deltas)) appeared normal and their T cells readily killed target cells, whereas T cells lacking mFasL (FasL(Deltam/Deltam)) could not kill cells through Fas activation. FasL(Deltam/Deltam) mice developed lymphadenopathy and hyper-gammaglobulinaemia, similar to FasL(gld/gld) mice, which express a mutant form of FasL that cannot bind Fas, but surprisingly, FasL(Deltam/Deltam) mice (on a C57BL/6 background) succumbed to systemic lupus erythematosus (SLE)-like autoimmune kidney destruction and histiocytic sarcoma, diseases that occur only rarely and much later in FasL(gld/gld) mice. These results demonstrate that mFasL is essential for cytotoxic activity and constitutes the guardian against lymphadenopathy, autoimmunity and cancer, whereas excess sFasL appears to promote autoimmunity and tumorigenesis through non-apoptotic activities.
Asunto(s)
Apoptosis , Membrana Celular/metabolismo , Proteína Ligando Fas/metabolismo , Receptor fas/metabolismo , Animales , Anticuerpos Antinucleares/inmunología , Citidina Desaminasa/metabolismo , Citotoxicidad Inmunológica , Proteína Ligando Fas/deficiencia , Proteína Ligando Fas/genética , Glomerulonefritis/metabolismo , Sarcoma Histiocítico/metabolismo , Hipergammaglobulinemia/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Enfermedades Linfáticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Esplenomegalia/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismoRESUMEN
Fli-1 and Erg are closely related members of the Ets family of transcription factors. Both genes are translocated in human cancers, including Ewing's sarcoma, leukemia, and in the case of Erg, more than half of all prostate cancers. Although evidence from mice and humans suggests that Fli-1 is required for megakaryopoiesis, and that Erg is required for normal adult hematopoietic stem cell (HSC) regulation, their precise physiological roles remain to be defined. To elucidate the relationship between Fli-1 and Erg in hematopoiesis, we conducted an analysis of mice carrying mutations in both genes. Our results demonstrate that there is a profound genetic interaction between Fli-1 and Erg. Double heterozygotes displayed phenotypes more dramatic than single heterozygotes: severe thrombocytopenia, with a significant deficit in megakaryocyte numbers and evidence of megakaryocyte dysmorphogenesis, and loss of HSCs accompanied by a reduction in the number of committed hematopoietic progenitor cells. These results illustrate an indispensable requirement for both Fli-1 and Erg in normal HSC and megakaryocyte homeostasis, and suggest these transcription factors may coregulate common target genes.
Asunto(s)
Regulación de la Expresión Génica , Megacariocitos/citología , Proteínas Oncogénicas/química , Proteína Proto-Oncogénica c-fli-1/química , Animales , Plaquetas/metabolismo , Linaje de la Célula , Cruzamientos Genéticos , Heterocigoto , Humanos , Ratones , Ratones Transgénicos , Modelos Genéticos , Mutación , Trombopoyetina/metabolismo , Factores de Transcripción , Regulador Transcripcional ERGRESUMEN
Survival and death of lymphocytes are regulated by the balance between pro- and antiapoptotic members of the Bcl-2 family; this is coordinated with the control of cell cycling and differentiation. Bim, a proapoptotic BH3-only member of the Bcl-2 family, can be regulated by MEK/ERK-mediated phosphorylation, which affects its binding to pro-survival Bcl-2 family members and its turnover. We investigated Bim modifications in mouse B and T lymphoid cells after exposure to apoptotic stimuli and during mitogenic activation. Treatment with ionomycin or cytokine withdrawal caused an elevation in Bim(EL), the most abundant Bim isoform. In contrast, in mitogenically stimulated T and B cells, Bim(EL) was rapidly phosphorylated, and its levels declined. Pharmacological inhibitors of MEK/ERK signaling prevented both of these changes in Bim, reduced proliferation, and triggered apoptosis of mitogen-stimulated T and B cells. Loss of Bim prevented this cell killing but did not restore cell cycling. These results show that during mitogenic stimulation of T and B lymphocytes MEK/ERK signaling is critical for two distinct processes, cell survival, mediated (at least in part) through phosphorylation and consequent inhibition of Bim, and cell cycling, which proceeds independently of Bim inactivation.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Subgrupos de Linfocitos B/citología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Activación de Linfocitos/inmunología , Proteínas de la Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/fisiología , Mitógenos/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Subgrupos de Linfocitos T/citología , Animales , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/deficiencia , Proteínas Reguladoras de la Apoptosis/genética , Subgrupos de Linfocitos B/enzimología , Subgrupos de Linfocitos B/inmunología , Proteína 11 Similar a Bcl2 , Supervivencia Celular/inmunología , Células Cultivadas , Fragmentos Fab de Inmunoglobulinas/farmacología , Ionomicina/farmacología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fosforilación , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Ratas , Ratas Wistar , Subgrupos de Linfocitos T/enzimología , Subgrupos de Linfocitos T/inmunología , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologíaRESUMEN
Ets-related gene (ERG), which encodes a member of the Ets family of transcription factors, is a potent oncogene. Chromosomal rearrangements involving ERG are found in acute myeloid leukemia, acute lymphoblastic leukemia, Ewing's sarcoma and more than half of all prostate cancers; however, the normal physiological function of Erg is unknown. We did a sensitized genetic screen of the mouse for regulators of hematopoietic stem cell function and report here a germline mutation of Erg. We show that Erg is required for definitive hematopoiesis, adult hematopoietic stem cell function and the maintenance of normal peripheral blood platelet numbers.