Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
J Phys Chem Lett ; 15(21): 5665-5673, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38767654

RESUMEN

Molecules cooled to ultracold temperatures are desirable for applications in fundamental physics and quantum information science. However, cooling polyatomic molecules with more than six atoms has not yet been achieved. Building on the idea of an optical cycling center (OCC), a moiety supporting a set of localized and isolated electronic states within a polyatomic molecule, molecules with two OCCs (bi-OCCs) may afford better cooling efficiency by doubling the photon scattering rate. By using quantum chemistry calculations, we assess the extent of the coupling of the two OCCs with each other and the molecular scaffold. We show that promising coolable bi-OCC molecules can be proposed by following chemical design principles.

4.
J Chem Phys ; 160(12)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38530011

RESUMEN

We report high-level calculations of the excited states of [2,2]-paracyclophane (PCP), which was recently investigated experimentally by ultrafast pump-probe experiments on oriented single crystals [Haggag et al., ChemPhotoChem 6 e202200181 (2022)]. PCP, in which the orientation of the two benzene rings and their range of motion are constrained, serves as a model for studying benzene excimer formation. The character of the excimer state and the state responsible for the brightest transition are similar to those of the benzene dimer. The constrained structure of PCP allows one to focus on the most important degree of freedom, the inter-ring distance. The calculations explain the main features of the transient absorption spectral evolution. This brightest transition of the excimer is polarized along the inter-fragment axis. The absorption of the light polarized in the plane of the rings reveals the presence of other absorbing states of Rydberg character, with much weaker intensities. We also report new transient absorption data obtained by a broadband 8 fs pump, which time-resolve strong modulations of the excimer absorption. The combination of theory and experiment provides a detailed picture of the evolution of the electronic structure of the PCP excimer in the course of a single molecular vibration.

5.
J Chem Theory Comput ; 20(6): 2520-2537, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38488640

RESUMEN

This study assesses the performance of various meta-generalized gradient approximation (meta-GGA), global hybrid, and range-separated hybrid (RSH) density functionals in capturing the excited-state properties of organic chromophores and their excited-state complexes (exciplexes). Motivated by their uses in solar energy harvesting and photoredox CO2 reduction, we use oligo-(p-phenylenes) and their excited-state complexes with triethylamine as model systems. We focus on the fluorescence properties of these systems, specifically emission energies. We also consider solvatochromic shifts and wave function characteristics. The latter is described by using reduced quantities such as natural transition orbitals (NTOs) and exciton descriptors. The functionals are benchmarked against the experimental fluorescence spectra and the equation-of-motion coupled-cluster method with single and double excitations. Both in isolated chromophores and in exciplexes, meta-GGA functionals drastically underestimate the emission energies and exhibit significant exciton delocalization and anticorrelation between electron and hole motion. The performance of global hybrid functionals is strongly dependent on the percentage of exact exchange. Our study identifies RSH GGAs as the best-performing functionals, with ωPBE demonstrating the best agreement with experimental results. RSH meta-GGAs often overestimate emission energies in exciplexes and yield larger hole NTOs. Their performance can be improved by optimally tuning the range-separation parameter.

6.
Phys Chem Chem Phys ; 26(3): 1845-1859, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38174659

RESUMEN

We present state-of-the-art calculations of the core-ionization spectrum of water. Despite significant progress in procedures developed to mitigate various experimental complications and uncertainties, the experimental determination of ionization energies of solvated species involves several non-trivial steps such as assessing the effect of the surface potential, electrolytes, and finite escape depths of photoelectrons. This provides a motivation to obtain robust theoretical values of the intrinsic bulk ionization energy and the corresponding solvent-induced shift. Here we develop theoretical protocols based on coupled-cluster theory and electrostatic embedding. Our value of the intrinsic solvent-induced shift of the 1sO ionization energy of water is -1.79 eV. The computed absolute position and the width of the 1sO peak in photoelectron spectrum of water are 538.47 eV and 1.44 eV, respectively, agreeing well with the best experimental values.

7.
J Comput Chem ; 45(12): 878-885, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38156823

RESUMEN

We present the two-photon absorption (2PA) spectrum of aqueous thiocyanate calculated using high-level quantum-chemistry methods. The 2PA spectrum is compared to the one-photon absorption (1PA) spectrum computed using the same computational protocol. Although the two spectra probe the same set of electronic states, the intensity patterns are different, leading to an apparent red-shift of the 2PA spectrum relative to the 1PA spectrum. The presented analysis explains the intensity patterns and attributes the differences between the 1PA and 2PA spectra to the native symmetry of isolated SCN - , which influences the spectra in the low-symmetry solvated environment. The native symmetry also manifests itself in variations of the polarization ratio (e.g., parallel vs. perpendicular cross sections) across the spectrum. The presented results highlight the potential of 2PA spectroscopy and high-level quantum-chemistry methods in studies of condensed-phase phenomena.

8.
Proc Natl Acad Sci U S A ; 120(48): e2301642120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37983511

RESUMEN

Science is among humanity's greatest achievements, yet scientific censorship is rarely studied empirically. We explore the social, psychological, and institutional causes and consequences of scientific censorship (defined as actions aimed at obstructing particular scientific ideas from reaching an audience for reasons other than low scientific quality). Popular narratives suggest that scientific censorship is driven by authoritarian officials with dark motives, such as dogmatism and intolerance. Our analysis suggests that scientific censorship is often driven by scientists, who are primarily motivated by self-protection, benevolence toward peer scholars, and prosocial concerns for the well-being of human social groups. This perspective helps explain both recent findings on scientific censorship and recent changes to scientific institutions, such as the use of harm-based criteria to evaluate research. We discuss unknowns surrounding the consequences of censorship and provide recommendations for improving transparency and accountability in scientific decision-making to enable the exploration of these unknowns. The benefits of censorship may sometimes outweigh costs. However, until costs and benefits are examined empirically, scholars on opposing sides of ongoing debates are left to quarrel based on competing values, assumptions, and intuitions.


Asunto(s)
Censura de la Investigación , Ciencia , Responsabilidad Social , Costos y Análisis de Costo
9.
J Phys Chem Lett ; 14(38): 8612-8619, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37728255

RESUMEN

States with core- or inner-shell vacancies, which are commonly created by absorption of high-energy photons, can decay by a two-electron process in which one electron fills the core hole and the second one is ejected. These processes accompany many X-ray spectroscopies. Depending on the nature of the initial core- or inner-shell-hole state and the decay valence-hole state, these processes are called Auger decay, intermolecular Coulomb decay, or electron-transfer-mediated decay. To connect many-body wave functions of the initial and final states with the molecular orbital picture of the decay, we introduce the concept of natural Auger orbitals (NAOs). NAOs are obtained by a two-step singular value decomposition of the two-body Dyson orbitals, reduced quantities that enter the expression of the decay rate in the Feshbach-Fano treatment. NAOs afford chemical insight and interpretation of the high-level ab initio calculations of Auger decay and related two-electron relaxation processes.

10.
J Phys Chem A ; 127(40): 8459-8472, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37774315

RESUMEN

Among various techniques designed for studying open-shell species, electron paramagnetic resonance (EPR) spectroscopy plays an important role. The key quantity measured by EPR is the g-tensor, describing the coupling between an external magnetic field and molecular electronic spin. One theoretical framework for quantum chemistry calculations of g-tensors is based on response theory, which involves substantial developments that are specific to the underlying electronic structure models. A simplified and easier-to-implement approach is based on the state-interaction scheme, in which perturbation is included by considering a small number of states. We describe and benchmark the state-interaction approach using equation-of-motion coupled-cluster and restricted-active-space configuration interaction wave functions. The analysis confirms that this approach can deliver accurate results and highlights caveats of applying it, such as a choice of the reference state, convergence with respect to the number of states used in calculations, etc. The analysis also contributes toward a better understanding of challenges in calculations of higher-order properties using approximate wave functions.

11.
J Chem Theory Comput ; 19(17): 5821-5834, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37647100

RESUMEN

We present the theory for the evaluation of nonadiabatic couplings (NACs) involving resonance states within the complex absorbing potential equation-of-motion coupled-cluster (CAP-EOM-CC) framework implemented within the singles and doubles approximation. Resonance states are embedded in the continuum and undergo rapid decay through autodetachment. In addition, nuclear motion can facilitate transitions between different resonances and between resonances and bound states. These nonadiabatic transitions affect the chemical fate of resonances and have distinct spectroscopic signatures. The NAC vector is a central quantity needed to model such effects. In the CAP-EOM-CC framework, resonance states are treated on the same footing as bound states. Using the example of fumaronitrile, which supports a bound radical anion and several anionic resonances, we analyze the NAC between bound states and pseudocontinuum states, between bound states and resonances, and between two resonances. We find that the NAC between a bound state and a resonance is nearly independent of the CAP strength and thus straightforward to evaluate, whereas the NAC between two resonance states or between a bound state and a pseudocontinuum state is more difficult to evaluate.

12.
J Chem Phys ; 159(6)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37551803

RESUMEN

Exciplexes are excited-state complexes formed as a result of partial charge transfer from the donor to the acceptor species when one moiety of the donor-acceptor pair is electronically excited. The arene-amine exciplex formed between oligo-(p-phenylene) (OPP) and triethylamine (TEA) is of interest in the catalytic photoreduction of CO2 because it can compete with complete electron transfer to the OPP catalyst. Therefore, formation of the exciplex can hinder the generation of a radical anion OPP·- necessary for subsequent CO2 reduction. We report an implementation of a workflow automating quantum-chemistry calculations that generate and characterize an ensemble of structures to represent this exciplex state. We use FireWorks, Pymatgen, and Custodian Python packages for high-throughput ensemble generation. The workflow includes time-dependent density functional theory optimization, verification of excited-state minima, and exciplex characterization with natural transition orbitals, exciton analysis, excited-state Mulliken charges, and energy decomposition analysis. Fluorescence spectra computed for these ensembles using Boltzmann-weighted contributions of each structure agree better with experiment than our previous calculations based on a single representative exciplex structure [Kron et al., J. Phys. Chem. A 126, 2319-2329 (2022)]. The ensemble description of the exciplex state also reproduces an experimentally observed red shift of the emission spectrum of [OPP-4-TEA]* relative to [OPP-3-TEA]*. The workflow developed here streamlines otherwise labor-intensive calculations that would require significant user involvement and intervention.

13.
J Phys Chem A ; 127(31): 6552-6566, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37505075

RESUMEN

Near-term quantum devices promise to revolutionize quantum chemistry, but simulations using the current noisy intermediate-scale quantum (NISQ) devices are not practical due to their high susceptibility to errors. This motivated the design of NISQ algorithms leveraging classical and quantum resources. While several developments have shown promising results for ground-state simulations, extending the algorithms to excited states remains challenging. This paper presents two cost-efficient excited-state algorithms inspired by the classical Davidson algorithm. We implemented the Davidson method into the quantum self-consistent equation-of-motion unitary coupled-cluster (q-sc-EOM-UCC) excited-state method adapted for quantum hardware. The circuit strategies for generating desired excited states are discussed, implemented, and tested. We demonstrate the performance and accuracy of the proposed algorithms (q-sc-EOM-UCC/Davidson and its variational variant) by simulations of H2, H4, LiH, and H2O molecules. Similar to the classical Davidson scheme, q-sc-EOM-UCC/Davidson algorithms are capable of targeting a small number of excited states of the desired character.

15.
J Am Chem Soc ; 145(24): 13204-13214, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37294056

RESUMEN

We report the results of computational modeling of the reactions of the SARS-CoV-2 main protease (MPro) with four potential covalent inhibitors. Two of them, carmofur and nirmatrelvir, have shown experimentally the ability to inhibit MPro. Two other compounds, X77A and X77C, were designed computationally in this work. They were derived from the structure of X77, a non-covalent inhibitor forming a tight surface complex with MPro. We modified the X77 structure by introducing warheads capable of reacting with the catalytic cysteine residue in the MPro active site. The reaction mechanisms of the four molecules with MPro were investigated by quantum mechanics/molecular mechanics (QM/MM) simulations. The results show that all four compounds form covalent adducts with the catalytic cysteine Cys 145 of MPro. From the chemical perspective, the reactions of these four molecules with MPro follow three distinct mechanisms. The reactions are initiated by a nucleophilic attack of the thiolate group of the deprotonated cysteine residue from the catalytic dyad Cys145-His41 of MPro. In the case of carmofur and X77A, the covalent binding of the thiolate to the ligand is accompanied by the formation of the fluoro-uracil leaving group. The reaction with X77C follows the nucleophilic aromatic substitution SNAr mechanism. The reaction of MPro with nirmatrelvir (which has a reactive nitrile group) leads to the formation of a covalent thioimidate adduct with the thiolate of the Cys145 residue in the enzyme active site. Our results contribute to the ongoing search for efficient inhibitors of the SARS-CoV-2 enzymes.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Cisteína , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Antivirales/farmacología , Simulación del Acoplamiento Molecular
16.
J Phys Chem A ; 127(10): 2258-2264, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36877889

RESUMEN

The vibrational spectra of cold complexes of ethylenediaminetetraacetic acid (EDTA) with transition metal dications in vacuo show how the electronic structure of the metal provides a geometric template for interaction with the functional groups of the binding pocket. The OCO stretching modes of the carboxylate groups of EDTA serve as structural probes, informing on the spin state of the ion as well as the coordination number in the complex. The results highlight the flexibility of EDTA in accepting a large range of metal cations in its binding site.

17.
J Am Chem Soc ; 145(6): 3554-3560, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36735829

RESUMEN

Tabletop X-ray spectroscopy measurements at the carbon K-edge complemented by ab initio calculations are used to investigate the influence of the bromine atom on the carbon core-valence transitions in the bromobenzene cation (BrBz+). The electronic ground state of the cation is prepared by resonance-enhanced two-photon ionization of neutral bromobenzene (BrBz) and probed by X-rays produced by high-harmonic generation (HHG). Replacing one of the hydrogen atoms in benzene with a bromine atom shifts the transition from the 1sC* orbital of the carbon atom (C*) bonded to bromine by ∼1 eV to higher energy in the X-ray spectrum compared to the other carbon atoms (C). Moreover, in BrBz+, the X-ray spectrum is dominated by two relatively intense transitions, 1sC→π* and 1sC*→σ*(C*-Br), where the second transition is enhanced relative to the neutral BrBz. In addition, a doublet peak shape for these two transitions is observed in the experiment. The 1sC→π* doublet peak shape arises due to the spin coupling of the unpaired electron in the partially vacant π orbital (from ionization) with the two other unpaired electrons resulting from the transition from the 1sC core orbital to the fully vacant π* orbitals. The 1sC*→σ* doublet peak shape results from several transitions involving σ* and vibrational C*-Br mode activations following the UV ionization, which demonstrates the impact of the C*-Br bond length on the core-valence transition as well as on the relaxation geometry of BrBz+.

18.
J Chem Phys ; 158(6): 064109, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36792526

RESUMEN

We present an ab initio computational study of the Auger electron spectrum of benzene. Auger electron spectroscopy exploits the Auger-Meitner effect, and although it is established as an analytic technique, the theoretical modeling of molecular Auger spectra from first principles remains challenging. Here, we use coupled-cluster theory and equation-of-motion coupled-cluster theory combined with two approaches to describe the decaying nature of core-ionized states: (i) Feshbach-Fano resonance theory and (ii) the method of complex basis functions. The spectra computed with these two approaches are in excellent agreement with each other and also agree well with experimental Auger spectra of benzene. The Auger spectrum of benzene features two well-resolved peaks at Auger electron energies above 260 eV, which correspond to final states with two electrons removed from the 1e1g and 3e2g highest occupied molecular orbitals. At lower Auger electron energies, the spectrum is less well resolved, and the peaks comprise multiple final states of the benzene dication. In line with theoretical considerations, singlet decay channels contribute more to the total Auger intensity than the corresponding triplet decay channels.

19.
J Chem Phys ; 158(5): 054102, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36754800

RESUMEN

The equation-of-motion coupled-cluster singles and doubles method with double electron attachment (EOM-DEA-CCSD) is capable of computing reliable energies, wave functions, and first-order properties of excited states in diradicals and polyenes that have a significant doubly excited character with respect to the ground state, without the need for including the computationally expensive triple excitations. Here, we extend the capabilities of the EOM-DEA-CCSD method to the calculations of a multiphoton property, two-photon absorption (2PA) cross sections. Closed-form expressions for the 2PA cross sections are derived within the expectation-value approach using response wave functions. We analyze the performance of this new implementation by comparing the EOM-DEA-CCSD energies and 2PA cross sections with those computed using the CC3 quadratic response theory approach. As benchmark systems, we consider transitions to the states with doubly excited character in twisted ethene and in polyenes, for which EOM-EE-CCSD (EOM-CCSD for excitation energies) performs poorly. The EOM-DEA-CCSD 2PA cross sections are comparable with the CC3 results for twisted ethene; however, the discrepancies between the two methods are large for hexatriene. The observed trends are explained by configurational analysis of the 2PA channels.

20.
J Comput Chem ; 44(3): 367-380, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35699152

RESUMEN

Low-energy spectra of single-molecule magnets (SMMs) are often described by Heisenberg Hamiltonians. Within this formalism, exchange interactions between magnetic centers determine the ground-state multiplicity and energy separation between the ground and excited states. In this contribution, we extract exchange coupling constants (J) for a set of iron (III) binuclear and tetranuclear complexes from all-electron calculations using non-collinear spin-flip time-dependent density functional theory (NC-SF-TDDFT). For 12 binuclear complexes with J-values ranging from -6 to -132 cm-1 , our benchmark calculations using the short-range hybrid ωPBEh functional and 6-31G(d,p) basis set agree well with the experimentally derived values (mean absolute error of 4.7 cm-1 ). For the tetranuclear SMMs, the computed J constants are within 6 cm-1 from the experimentally derived values. We explore the range of applicability of the Heisenberg model by analyzing bonding patterns in these Fe(III) complexes using natural orbitals (NO), their occupations, and the number of effectively unpaired electrons. The results illustrate the efficiency of the spin-flip protocol for computing the exchange couplings and the utility of the NO analysis in assessing the validity of effective spin Hamiltonians.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA