Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nucleic Acids Res ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38797520

RESUMEN

Whole-genome bisulfite sequencing (BS-Seq) measures cytosine methylation changes at single-base resolution and can be used to profile cell-free DNA (cfDNA). In plasma, ultrashort single-stranded cfDNA (uscfDNA, ∼50 nt) has been identified together with 167 bp double-stranded mononucleosomal cell-free DNA (mncfDNA). However, the methylation profile of uscfDNA has not been described. Conventional BS-Seq workflows may not be helpful because bisulfite conversion degrades larger DNA into smaller fragments, leading to erroneous categorization as uscfDNA. We describe the '5mCAdpBS-Seq' workflow in which pre-methylated 5mC (5-methylcytosine) single-stranded adapters are ligated to heat-denatured cfDNA before bisulfite conversion. This method retains only DNA fragments that are unaltered by bisulfite treatment, resulting in less biased uscfDNA methylation analysis. Using 5mCAdpBS-Seq, uscfDNA had lower levels of DNA methylation (∼15%) compared to mncfDNA and was enriched in promoters and CpG islands. Hypomethylated uscfDNA fragments were enriched in upstream transcription start sites (TSSs), and the intensity of enrichment was correlated with expressed genes of hemopoietic cells. Using tissue-of-origin deconvolution, we inferred that uscfDNA is derived primarily from eosinophils, neutrophils, and monocytes. As proof-of-principle, we show that characteristics of the methylation profile of uscfDNA can distinguish non-small cell lung carcinoma from non-cancer samples. The 5mCAdpBS-Seq workflow is recommended for any cfDNA methylation-based investigations.

2.
Cell Rep Med ; 5(4): 101479, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38518770

RESUMEN

Immune checkpoint blockade (ICB) with PD-1/PD-L1 inhibition has revolutionized the treatment of non-small cell lung cancer (NSCLC). Durable responses, however, are observed only in a subpopulation of patients. Defective antigen presentation and an immunosuppressive tumor microenvironment (TME) can lead to deficient T cell recruitment and ICB resistance. We evaluate intratumoral (IT) vaccination with CXCL9- and CXCL10-engineered dendritic cells (CXCL9/10-DC) as a strategy to overcome resistance. IT CXCL9/10-DC leads to enhanced T cell infiltration and activation in the TME and tumor inhibition in murine NSCLC models. The antitumor efficacy of IT CXCL9/10-DC is dependent on CD4+ and CD8+ T cells, as well as CXCR3-dependent T cell trafficking from the lymph node. IT CXCL9/10-DC, in combination with ICB, overcomes resistance and establishes systemic tumor-specific immunity in murine models. These studies provide a mechanistic understanding of CXCL9/10-DC-mediated host immune activation and support clinical translation of IT CXCL9/10-DC to augment ICB efficacy in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Ratones , Animales , Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico , Células Dendríticas , Microambiente Tumoral , Quimiocina CXCL9
3.
Cell Rep Med ; 4(10): 101198, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37716353

RESUMEN

The emerging field of liquid biopsy stands at the forefront of novel diagnostic strategies for cancer and other diseases. Liquid biopsy allows minimally invasive molecular characterization of cancers for diagnosis, patient stratification to therapy, and longitudinal monitoring. Liquid biopsy strategies include detection and monitoring of circulating tumor cells, cell-free DNA, and extracellular vesicles. In this review, we address the current understanding and the role of existing liquid-biopsy-based modalities in cancer diagnostics and monitoring. We specifically focus on the technical and clinical challenges associated with liquid biopsy and biomarker development being addressed by the Liquid Biopsy Consortium, established through the National Cancer Institute. The Liquid Biopsy Consortium has developed new methods/assays and validated existing methods/technologies to capture and characterize tumor-derived circulating cargo, as well as addressed existing challenges and provided recommendations for advancing biomarker assays.


Asunto(s)
Ácidos Nucleicos Libres de Células , Vesículas Extracelulares , Células Neoplásicas Circulantes , Humanos , Biopsia Líquida , Ácidos Nucleicos Libres de Células/genética , Biomarcadores , Células Neoplásicas Circulantes/patología
4.
J Immunother Cancer ; 11(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37730274

RESUMEN

BACKGROUND: Despite recent advances in immunotherapy, many patients with non-small cell lung cancer (NSCLC) do not respond to immune checkpoint inhibitors (ICI). Resistance to ICI may be driven by suboptimal priming of antitumor T lymphocytes due to poor antigen presentation as well as their exclusion and impairment by the immunosuppressive tumor microenvironment (TME). In a recent phase I trial in patients with NSCLC, in situ vaccination (ISV) with dendritic cells engineered to secrete CCL21 (CCL21-DC), a chemokine that facilitates the recruitment of T cells and DC, promoted T lymphocyte tumor infiltration and PD-L1 upregulation. METHODS: Murine models of NSCLC with distinct driver mutations (KrasG12D/P53+/-/Lkb1-/- (KPL); KrasG12D/P53+/- (KP); and KrasG12D (K)) and varying tumor mutational burden were used to evaluate the efficacy of combination therapy with CCL21-DC ISV plus ICI. Comprehensive analyses of longitudinal preclinical samples by flow cytometry, single cell RNA-sequencing (scRNA-seq) and whole-exome sequencing were performed to assess mechanisms of combination therapy. RESULTS: ISV with CCL21-DC sensitized immune-resistant murine NSCLCs to ICI and led to the establishment of tumor-specific immune memory. Immunophenotyping revealed that CCL21-DC obliterated tumor-promoting neutrophils, promoted sustained infiltration of CD8 cytolytic and CD4 Th1 lymphocytes and enriched progenitor T cells in the TME. Addition of ICI to CCL21-DC further enhanced the expansion and effector function of T cells both locally and systemically. Longitudinal evaluation of tumor mutation profiles revealed that CCL21-DC plus ICI induced immunoediting of tumor subclones, consistent with the broadening of tumor-specific T cell responses. CONCLUSIONS: CCL21-DC ISV synergizes with anti-PD-1 to eradicate murine NSCLC. Our data support the clinical application of CCL21-DC ISV in combination with checkpoint inhibition for patients with NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras) , Proteína p53 Supresora de Tumor , Neoplasias Pulmonares/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral , Quimiocina CCL21
5.
Cancer Res ; 83(19): 3305-3319, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37477508

RESUMEN

A greater understanding of molecular, cellular, and immunological changes during the early stages of lung adenocarcinoma development could improve diagnostic and therapeutic approaches in patients with pulmonary nodules at risk for lung cancer. To elucidate the immunopathogenesis of early lung tumorigenesis, we evaluated surgically resected pulmonary nodules representing the spectrum of early lung adenocarcinoma as well as associated normal lung tissues using single-cell RNA sequencing and validated the results by flow cytometry and multiplex immunofluorescence (MIF). Single-cell transcriptomics revealed a significant decrease in gene expression associated with cytolytic activities of tumor-infiltrating natural killer and natural killer T cells. This was accompanied by a reduction in effector T cells and an increase of CD4+ regulatory T cells (Treg) in subsolid nodules. An independent set of resected pulmonary nodules consisting of both adenocarcinomas and associated premalignant lesions corroborated the early increment of Tregs in premalignant lesions compared with the associated normal lung tissues by MIF. Gene expression analysis indicated that cancer-associated alveolar type 2 cells and fibroblasts may contribute to the deregulation of the extracellular matrix, potentially affecting immune infiltration in subsolid nodules through ligand-receptor interactions. These findings suggest that there is a suppression of immune surveillance across the spectrum of early-stage lung adenocarcinoma. SIGNIFICANCE: Analysis of a spectrum of subsolid pulmonary nodules by single-cell RNA sequencing provides insights into the immune regulation and cell-cell interactions in the tumor microenvironment during early lung tumor development.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Humanos , Monitorización Inmunológica , Tomografía Computarizada por Rayos X/métodos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Adenocarcinoma/genética , Adenocarcinoma/patología , Microambiente Tumoral
6.
Proc Natl Acad Sci U S A ; 120(28): e2305236120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399400

RESUMEN

Plasma cell-free DNA (cfDNA) is a noninvasive biomarker for cell death of all organs. Deciphering the tissue origin of cfDNA can reveal abnormal cell death because of diseases, which has great clinical potential in disease detection and monitoring. Despite the great promise, the sensitive and accurate quantification of tissue-derived cfDNA remains challenging to existing methods due to the limited characterization of tissue methylation and the reliance on unsupervised methods. To fully exploit the clinical potential of tissue-derived cfDNA, here we present one of the largest comprehensive and high-resolution methylation atlas based on 521 noncancer tissue samples spanning 29 major types of human tissues. We systematically identified fragment-level tissue-specific methylation patterns and extensively validated them in orthogonal datasets. Based on the rich tissue methylation atlas, we develop the first supervised tissue deconvolution approach, a deep-learning-powered model, cfSort, for sensitive and accurate tissue deconvolution in cfDNA. On the benchmarking data, cfSort showed superior sensitivity and accuracy compared to the existing methods. We further demonstrated the clinical utilities of cfSort with two potential applications: aiding disease diagnosis and monitoring treatment side effects. The tissue-derived cfDNA fraction estimated from cfSort reflected the clinical outcomes of the patients. In summary, the tissue methylation atlas and cfSort enhanced the performance of tissue deconvolution in cfDNA, thus facilitating cfDNA-based disease detection and longitudinal treatment monitoring.


Asunto(s)
Ácidos Nucleicos Libres de Células , Aprendizaje Profundo , Humanos , Ácidos Nucleicos Libres de Células/genética , Metilación de ADN , Biomarcadores , Regiones Promotoras Genéticas , Biomarcadores de Tumor/genética
7.
Cell Rep Med ; 2(10): 100411, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34755131

RESUMEN

Neoadjuvant PD-1 blockade may be efficacious in some individuals with high-risk, resectable oral cavity head and neck cancer. To explore correlates of response patterns to neoadjuvant nivolumab treatment and post-surgical recurrences, we analyzed longitudinal tumor and blood samples in a cohort of 12 individuals displaying 33% responsiveness. Pretreatment tumor-based detection of FLT4 mutations and PTEN signature enrichment favors response, and high tumor mutational burden improves recurrence-free survival. In contrast, preexisting and/or acquired mutations (in CDKN2A, YAP1, or JAK2) correlate with innate resistance and/or tumor recurrence. Immunologically, tumor response after therapy entails T cell receptor repertoire diversification in peripheral blood and intratumoral expansion of preexisting T cell clones. A high ratio of regulatory T to T helper 17 cells in pretreatment blood predicts low T cell receptor repertoire diversity in pretreatment blood, a low cytolytic T cell signature in pretreatment tumors, and innate resistance. Our study provides a molecular framework to advance neoadjuvant anti-PD-1 therapy for individuals with resectable head and neck cancer.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias de la Boca/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Nivolumab/uso terapéutico , Receptor de Muerte Celular Programada 1/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Antineoplásicos Inmunológicos/uso terapéutico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/cirugía , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/inmunología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Janus Quinasa 2/genética , Janus Quinasa 2/inmunología , Neoplasias de la Boca/genética , Neoplasias de la Boca/inmunología , Neoplasias de la Boca/cirugía , Mutación , Terapia Neoadyuvante/métodos , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/cirugía , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Análisis de Supervivencia , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Células Th17/patología , Resultado del Tratamiento , Receptor 3 de Factores de Crecimiento Endotelial Vascular/inmunología , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/inmunología
8.
Cancer Discov ; 11(10): 2506-2523, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972311

RESUMEN

Little is known of the geospatial architecture of individual cell populations in lung adenocarcinoma (LUAD) evolution. Here, we perform single-cell RNA sequencing of 186,916 cells from five early-stage LUADs and 14 multiregion normal lung tissues of defined spatial proximities from the tumors. We show that cellular lineages, states, and transcriptomic features geospatially evolve across normal regions to LUADs. LUADs also exhibit pronounced intratumor cell heterogeneity within single sites and transcriptional lineage-plasticity programs. T regulatory cell phenotypes are increased in normal tissues with proximity to LUAD, in contrast to diminished signatures and fractions of cytotoxic CD8+ T cells, antigen-presenting macrophages, and inflammatory dendritic cells. We further find that the LUAD ligand-receptor interactome harbors increased expression of epithelial CD24, which mediates protumor phenotypes. These data provide a spatial atlas of LUAD evolution, and a resource for identification of targets for its treatment. SIGNIFICANCE: The geospatial ecosystem of the peripheral lung and early-stage LUAD is not known. Our multiregion single-cell sequencing analyses unravel cell populations, states, and phenotypes in the spatial and ecologic evolution of LUAD from the lung that comprise high-potential targets for early interception.This article is highlighted in the In This Issue feature, p. 2355.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Linfocitos T CD8-positivos , Neoplasias Pulmonares/patología , Microambiente Tumoral , Humanos , Análisis de la Célula Individual
9.
Artículo en Inglés | MEDLINE | ID: mdl-34001525

RESUMEN

Cancer interception refers to actively blocking the cancer development process by preventing progression of premalignancy to invasive disease. The rate-limiting steps for effective lung cancer interception are the incomplete understanding of the earliest molecular events associated with lung carcinogenesis, the lack of preclinical models of pulmonary premalignancy, and the challenge of developing highly sensitive and specific methods for early detection. Recent advances in cancer interception are facilitated by developments in next-generation sequencing, computational methodologies, as well as the renewed emphasis in precision medicine and immuno-oncology. This review summarizes the current state of knowledge in the areas of molecular abnormalities in lung cancer continuum, preclinical human models of lung cancer pathogenesis, and the advances in early lung cancer diagnostics.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pulmonares/diagnóstico , Tamizaje Masivo , Biomarcadores de Tumor/genética , Metilación de ADN , Humanos , Neoplasias Pulmonares/patología , Células Neoplásicas Circulantes , Medicina de Precisión , Proteómica , Medición de Riesgo
10.
Cancer Res ; 81(12): 3295-3308, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33853830

RESUMEN

LKB1 inactivating mutations are commonly observed in patients with KRAS-mutant non-small cell lung cancer (NSCLC). Although treatment of NSCLC with immune checkpoint inhibitors (ICI) has resulted in improved overall survival in a subset of patients, studies have revealed that co-occurring KRAS/LKB1 mutations drive primary resistance to ICIs in NSCLC. Effective therapeutic options that overcome ICI resistance in LKB1-mutant NSCLC are limited. Here, we report that loss of LKB1 results in increased secretion of the C-X-C motif (CXC) chemokines with an NH2-terminal Glu-Leu-Arg (ELR) motif in premalignant and cancerous cells, as well as in genetically engineered murine models (GEMM) of NSCLC. Heightened levels of ELR+ CXC chemokines in LKB1-deficient murine models of NSCLC positively correlated with increased abundance of granulocytic myeloid-derived suppressor cells (G-MDSC) locally within the tumor microenvironment and systemically in peripheral blood and spleen. Depletion of G-MDSCs with antibody or functional inhibition via all-trans-retinoic acid (ATRA) led to enhanced antitumor T-cell responses and sensitized LKB1-deficent murine tumors to PD-1 blockade. Combination therapy with anti-PD-1 and ATRA improved local and systemic T-cell proliferation and generated tumor-specific immunity. Our findings implicate ELR+ CXC chemokine-mediated enrichment of G-MDSCs as a potential mediator of immunosuppression in LKB1-deficient NSCLC and provide a rationale for using ATRA in combination with anti-PD-1 therapy in patients with LKB1-deficient NSCLC refractory to ICIs. SIGNIFICANCE: These findings show that accumulation of myeloid-derived suppressor cells in LKB1-deficient non-small cell lung cancer can be overcome via treatment with all-trans-retinoic acid, sensitizing tumors to immunotherapy.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP/deficiencia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos , Granulocitos/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Células Supresoras de Origen Mieloide/inmunología , Animales , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Cancer Immunol Immunother ; 70(8): 2389-2400, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33507343

RESUMEN

Conditional genetically engineered mouse models (GEMMs) of non-small cell lung cancer (NSCLC) harbor common oncogenic driver mutations of the disease, but in contrast to human NSCLC these models possess low tumor mutational burden (TMB). As a result, these models often lack tumor antigens that can elicit host adaptive immune responses, which limits their utility in immunotherapy studies. Here, we establish Kras-mutant murine models of NSCLC bearing the common driver mutations associated with the disease and increased TMB, by in vitro exposure of cell lines derived from GEMMs of NSCLC [KrasG12D (K), KrasG12DTp53-/-(KP), KrasG12DTp53+/-Lkb1-/- (KPL)] to the alkylating agent N-methyl-N-nitrosourea (MNU). Increasing the TMB enhanced host anti-tumor T cell responses and improved anti-PD-1 efficacy in syngeneic models across all genetic backgrounds. However, limited anti-PD-1 efficacy was observed in the KPL cell lines with increased TMB, which possessed a distinct immunosuppressed tumor microenvironment (TME) primarily composed of granulocytic myeloid-derived suppressor cells (G-MDSCs). This KPL phenotype is consistent with findings in human KRAS-mutant NSCLC where LKB1 loss is a driver of primary resistance to PD-1 blockade. In summary, these novel Kras-mutant NSCLC murine models with known driver mutations and increased TMB have distinct TMEs and recapitulate the therapeutic vulnerabilities of human NSCLC. We anticipate that these immunogenic models will facilitate the development of innovative immunotherapies in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Antígeno B7-H1/genética , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ratones , Proteínas Serina-Treonina Quinasas/genética , Microambiente Tumoral/genética , Proteína p53 Supresora de Tumor/genética
12.
Cancer Discov ; 10(10): 1442-1444, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33004476

RESUMEN

In this issue of Cancer Discovery, Pennycuick and colleagues comprehensively evaluate the immune contexture of progressive and regressive lesions in squamous pulmonary premalignancy. The authors dissect the molecular features of these lesions and the potential pathways of immune escape operative in progression to invasive cancer.See related article by Pennycuick et al., p. 1489.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Lesiones Precancerosas , Células Epiteliales , Humanos , Neoplasias Pulmonares/genética , Monitorización Inmunológica
13.
Cell Stem Cell ; 27(4): 663-678.e8, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32891189

RESUMEN

Mutant KRAS is a common driver in epithelial cancers. Nevertheless, molecular changes occurring early after activation of oncogenic KRAS in epithelial cells remain poorly understood. We compared transcriptional changes at single-cell resolution after KRAS activation in four sample sets. In addition to patient samples and genetically engineered mouse models, we developed organoid systems from primary mouse and human induced pluripotent stem cell-derived lung epithelial cells to model early-stage lung adenocarcinoma. In all four settings, alveolar epithelial progenitor (AT2) cells expressing oncogenic KRAS had reduced expression of mature lineage identity genes. These findings demonstrate the utility of our in vitro organoid approaches for uncovering the early consequences of oncogenic KRAS expression. This resource provides an extensive collection of datasets and describes organoid tools to study the transcriptional and proteomic changes that distinguish normal epithelial progenitor cells from early-stage lung cancer, facilitating the search for targets for KRAS-driven tumors.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Animales , Humanos , Pulmón , Ratones , Proteómica , Proteínas Proto-Oncogénicas p21(ras)/genética
14.
Cancer Epidemiol Biomarkers Prev ; 29(12): 2423-2430, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32856614

RESUMEN

An in-depth understanding of lung cancer biology and mechanisms of tumor progression has facilitated significant advances in the treatment of lung cancer. There remains a pressing need for the development of innovative approaches to detect and intercept lung cancer at its earliest stage of development. Recent advances in genomics, computational biology, and innovative technologies offer unique opportunities to identify the immune landscape in the tumor microenvironment associated with early-stage lung carcinogenesis, and provide further insight in the mechanism of lung cancer evolution. This review will highlight the concept of immunoediting and focus on recent studies assessing immune changes and biomarkers in pulmonary premalignancy and early-stage non-small cell lung cancer. A protumor immune response hallmarked by an increase in checkpoint inhibition and inhibitory immune cells and a simultaneous reduction in antitumor immune response have been correlated with tumor progression. The potential systemic biomarkers associated with early lung cancer will be highlighted along with current clinical efforts for lung cancer interception. Research focusing on the development of novel strategies for cancer interception prior to the progression to advanced stages will potentially lead to a paradigm shift in the treatment of lung cancer and have a major impact on clinical outcomes.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."


Asunto(s)
Biomarcadores/metabolismo , Neoplasias Pulmonares/diagnóstico , Humanos , Neoplasias Pulmonares/inmunología
16.
Am J Transl Res ; 12(2): 409-427, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194893

RESUMEN

Oncogenic KRAS mutations are frequently found in non-small cell lung carcinoma (NSCLC) and cause constitutive activation of the MEK-ERK pathway. Many cancer types have been shown to overexpress PD-L1 to escape immune surveillance. FRA1 is a MEK/ERK-dependent oncogenic transcription factor and a member of the AP-1 transcriptional factor superfamily. This study assesses the hypothesis that KRAS mutation directly regulates PD-L1 expression through the MEK-ERK pathway mediated by FRA1. Premalignant human bronchial epithelial cell (HBEC) lines harboring the KRAS mutationV12, EGFR mutation, p53 knock-down, or both KRAS mutation and p53 knock-down were tested for levels of PD-L1, FRA1, and ERK activation (pERK). Our results showed that KRAS mutation alone, but not other genetic alterations, induced significantly higher expression of PD-L1 compared to its vector counterparts. The increased PD-L1 expression in the KRAS mutated cells was dramatically reduced by inhibition of ERK activation. Furthermore, the MEK-ERK pathway-dependent PD-L1 expression was markedly reduced by FRA1 silencing. Interestingly, FRA1 silencing led to inhibition of ERK activation, indicating that FRA1 plays a role in PD-L1 regulation via positive feedback of ERK activation. Correlation of PD-L1 and FRA1 mRNA expression was validated using human lung cancer specimens from The Cancer Genome Atlas (TCGA) and established NSCLC cell lines from Cancer Cell Line Encyclopedia (CCLE). FRA1 expression was significantly associated with PD-L1 expression, and high FRA1 expression was correlated with poor overall survival. Our findings suggest that oncogenic KRAS-driven PD-L1 expression is dependent on MEK-ERK and FRA1 in high risk, premalignant HBEC.

17.
Sci Rep ; 10(1): 377, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941995

RESUMEN

Chronic inflammation facilitates tumor progression. We discovered that a subset of non-small cell lung cancer cells underwent a gradually progressing epithelial-to-mesenchymal (EMT) phenotype following a 21-day exposure to IL-1ß, an abundant proinflammatory cytokine in the at-risk for lung cancer pulmonary and the lung tumor microenvironments. Pathway analysis of the gene expression profile and in vitro functional studies revealed that the EMT and EMT-associated phenotypes, including enhanced cell invasion, PD-L1 upregulation, and chemoresistance, were sustained in the absence of continuous IL-1ß exposure. We referred to this phenomenon as EMT memory. Utilizing a doxycycline-controlled SLUG expression system, we found that high expression of the transcription factor SLUG was indispensable for the establishment of EMT memory. High SLUG expression in tumors of lung cancer patients was associated with poor survival. Chemical or genetic inhibition of SLUG upregulation prevented EMT following the acute IL-1ß exposure but did not reverse EMT memory. Chromatin immunoprecipitation and methylation-specific PCR further revealed a SLUG-mediated temporal regulation of epigenetic modifications, including accumulation of H3K27, H3K9, and DNA methylation, in the CDH1 (E-cadherin) promoter following the chronic IL-1ß exposure. Chemical inhibition of DNA methylation not only restored E-cadherin expression in EMT memory, but also primed cells for chemotherapy-induced apoptosis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Epigénesis Genética , Transición Epitelial-Mesenquimal , Memoria Inmunológica/inmunología , Inflamación/inmunología , Interleucina-1beta/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Humanos , Memoria Inmunológica/genética , Inflamación/genética , Interleucina-1beta/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Fenotipo , Células Tumorales Cultivadas
18.
Cancer Res ; 79(19): 5022-5033, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31142513

RESUMEN

Epithelial cells in the field of lung injury can give rise to distinct premalignant lesions that may bear unique genetic aberrations. A subset of these lesions may escape immune surveillance and progress to invasive cancer; however, the mutational landscape that may predict progression has not been determined. Knowledge of premalignant lesion composition and the associated microenvironment is critical for understanding tumorigenesis and the development of effective preventive and interception strategies. To identify somatic mutations and the extent of immune cell infiltration in adenomatous premalignancy and associated lung adenocarcinomas, we sequenced exomes from 41 lung cancer resection specimens, including 89 premalignant atypical adenomatous hyperplasia lesions, 15 adenocarcinomas in situ, and 55 invasive adenocarcinomas and their adjacent normal lung tissues. We defined nonsynonymous somatic mutations occurring in both premalignancy and the associated tumor as progression-associated mutations whose predicted neoantigens were highly correlated with infiltration of CD8+ and CD4+ T cells as well as upregulation of PD-L1 in premalignant lesions, suggesting the presence of an adaptive immune response to these neoantigens. Each patient had a unique repertoire of somatic mutations and associated neoantigens. Collectively, these results provide evidence for mutational heterogeneity, pathway dysregulation, and immune recognition in pulmonary premalignancy.Significance: These findings identify progression-associated somatic mutations, oncogenic pathways, and association between the mutational landscape and adaptive immune responses in adenomatous premalignancy.See related commentary by Merrick, p. 4811.


Asunto(s)
Adenocarcinoma , Adenoma , Neoplasias Pulmonares , Lesiones Precancerosas , Genómica , Humanos , Microambiente Tumoral
19.
Nat Commun ; 10(1): 1856, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015447

RESUMEN

Bronchial premalignant lesions (PMLs) are precursors of lung squamous cell carcinoma, but have variable outcome, and we lack tools to identify and treat PMLs at risk for progression to cancer. Here we report the identification of four molecular subtypes of PMLs with distinct differences in epithelial and immune processes based on RNA-Seq profiling of endobronchial biopsies from high-risk smokers. The Proliferative subtype is enriched with bronchial dysplasia and exhibits up-regulation of metabolic and cell cycle pathways. A Proliferative subtype-associated gene signature identifies subjects with Proliferative PMLs from normal-appearing uninvolved large airway brushings with high specificity. In progressive/persistent Proliferative lesions expression of interferon signaling and antigen processing/presentation pathways decrease and immunofluorescence indicates a depletion of innate and adaptive immune cells compared with regressive lesions. Molecular biomarkers measured in PMLs or the uninvolved airway can enhance histopathological grading and suggest immunoprevention strategies for intercepting the progression of PMLs to lung cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Broncogénico/patología , Regulación Neoplásica de la Expresión Génica/inmunología , Neoplasias Pulmonares/patología , Lesiones Precancerosas/patología , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Biomarcadores de Tumor/inmunología , Biopsia , Bronquios/diagnóstico por imagen , Bronquios/inmunología , Bronquios/patología , Broncoscopía , Carcinoma Broncogénico/genética , Carcinoma Broncogénico/inmunología , Carcinoma Broncogénico/prevención & control , Estudios de Cohortes , Conjuntos de Datos como Asunto , Progresión de la Enfermedad , Detección Precoz del Cáncer/métodos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/inmunología , Humanos , Inmunidad Celular/efectos de los fármacos , Inmunidad Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/prevención & control , Tamizaje Masivo/métodos , Persona de Mediana Edad , Lesiones Precancerosas/diagnóstico por imagen , Lesiones Precancerosas/genética , Lesiones Precancerosas/inmunología , ARN Mensajero/genética , Mucosa Respiratoria/citología , Mucosa Respiratoria/diagnóstico por imagen , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Análisis de Secuencia de ARN , Linfocitos T/inmunología , Tomografía Computarizada por Rayos X , Regulación hacia Arriba
20.
BMC Genomics ; 19(1): 180, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29510677

RESUMEN

BACKGROUND: The potential utility of microRNA as biomarkers for early detection of cancer and other diseases is being investigated with genome-scale profiling of differentially expressed microRNA. Processes for measurement assurance are critical components of genome-scale measurements. Here, we evaluated the utility of a set of total RNA samples, designed with between-sample differences in the relative abundance of miRNAs, as process controls. RESULTS: Three pure total human RNA samples (brain, liver, and placenta) and two different mixtures of these components were evaluated as measurement assurance control samples on multiple measurement systems at multiple sites and over multiple rounds. In silico modeling of mixtures provided benchmark values for comparison with physical mixtures. Biomarker development laboratories using next-generation sequencing (NGS) or genome-scale hybridization assays participated in the study and returned data from the samples using their routine workflows. Multiplexed and single assay reverse-transcription PCR (RT-PCR) was used to confirm in silico predicted sample differences. Data visualizations and summary metrics for genome-scale miRNA profiling assessment were developed using this dataset, and a range of performance was observed. These metrics have been incorporated into an online data analysis pipeline and provide a convenient dashboard view of results from experiments following the described design. The website also serves as a repository for the accumulation of performance values providing new participants in the project an opportunity to learn what may be achievable with similar measurement processes. CONCLUSIONS: The set of reference samples used in this study provides benchmark values suitable for assessing genome-scale miRNA profiling processes. Incorporation of these metrics into an online resource allows laboratories to periodically evaluate their performance and assess any changes introduced into their measurement process.


Asunto(s)
Encéfalo/metabolismo , Perfilación de la Expresión Génica/normas , Genoma Humano , Hígado/metabolismo , MicroARNs/genética , Placenta/metabolismo , Femenino , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Embarazo , Estándares de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA