Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2791: 107-111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532097

RESUMEN

The protein extraction method based on the phenol solution and combined with protein precipitation with ammonium acetate in methanol and purification in the same solution, and additionally in acetone and ethanol, is recommended for proteomic studies of plant tissues. The obtained protein samples do not require additional nucleic acid digestion and removal of interfering contaminations. The presented protocol was used to analyze the proteome of common buckwheat flowers and leaves.


Asunto(s)
Fenol , Proteínas de Plantas , Proteómica/métodos , Plantas , Fenoles , Hojas de la Planta , Electroforesis en Gel Bidimensional/métodos
2.
Methods Mol Biol ; 2791: 113-119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532098

RESUMEN

Two-dimensional gel electrophoresis (2-DE) is a proteomic tool used for the separation of protein mixtures according to protein isoelectric point and molecular mass. Although gel-free quantitative and qualitative proteomic study techniques are now available, 2-DE remains a useful analytical tool. The presented protocol was performed to analyze the flower and leaf proteome of common buckwheat using 24 cm immobilized pH gradient strips (pH 4-7) and visualization of proteins on gels via colloidal Coomassie G-250 staining.


Asunto(s)
Fagopyrum , Proteoma , Proteoma/análisis , Proteómica , Focalización Isoeléctrica/métodos , Hojas de la Planta/química , Flores , Electroforesis en Gel Bidimensional/métodos , Geles , Concentración de Iones de Hidrógeno
3.
Plants (Basel) ; 13(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38337896

RESUMEN

Among various methods stimulating biological progress, double haploid (DH) technology, which utilizes the process of microspore embryogenesis (ME), is potentially the most effective. However, the process depends on complex interactions between many genetic, physiological and environmental variables, and in many cases, e.g., winter wheat, does not operate with the efficiency required for commercial use. Stress associated with low-temperature treatment, isolation and transfer to in vitro culture has been shown to disturb redox homeostasis and generate relatively high levels of reactive oxygen species (ROS), affecting microspore vitality. The aim of this study was to investigate whether controlled plant growth, specific tiller pre-treatment and culture conditions could improve the potential of microspores to cope with stress and effectively induce ME. To understand the mechanism of the stress response, hydrogen peroxide levels, total activity and the content of the most important low-molecular-weight antioxidants (glutathione and ascorbate), as well as the content of selected macro- (Mg, Ca, NA, K) and micronutrients (Mn, Zn, Fe, Cu, Mo) were determined. These analyses, combined with the cytological characteristics of the microspore suspensions, allowed us to demonstrate that an increased microspore vitality and stronger response to ME induction were associated with higher stress resistance based on more efficient ROS scavenging and nutrient management. It was shown that a modified procedure, combining a low temperature with mannitol and sodium selenate tiller pre-treatment, reduced oxidative stress and improved the effectiveness of ME in winter wheat lines.

4.
Sci Rep ; 11(1): 22215, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34782682

RESUMEN

Effective microspore embryogenesis (ME) requires substantial modifications in gene expression pattern, followed by changes in the cell proteome and its metabolism. Recent studies have awakened also interest in the role of epigenetic factors in microspore de-differentiation and reprogramming. Therefore, demethylating agent (2.5-10 µM 5-azacytidine, AC) together with low temperature (3 weeks at 4 °C) were used as ME-inducing tiller treatment in two doubled haploid (DH) lines of triticale and its effect was analyzed in respect of anther protein profiles, expression of selected genes (TAPETUM DETERMINANT1 (TaTPD1-like), SOMATIC EMBRYOGENESIS RECEPTOR KINASE 2 (SERK2) and GLUTATHIONE S-TRANSFERASE (GSTF2)) and ME efficiency. Tiller treatment with 5.0 µM AC was the most effective in ME induction; it was associated with (1) suppression of intensive anabolic processes-mainly photosynthesis and light-dependent reactions, (2) transition to effective catabolism and mobilization of carbohydrate reserve to meet the high energy demand of cells during microspore reprograming and (3) effective defense against stress-inducing treatment, i.e. protection of proper folding during protein biosynthesis and effective degradation of dysfunctional or damaged proteins. Additionally, 5.0 µM AC enhanced the expression of all genes previously identified as being associated with embryogenic potential of microspores (TaTPD1-like, SERK and GSTF2).


Asunto(s)
Azacitidina/farmacología , Desarrollo Embrionario , Proteoma , Proteómica , Triticale/efectos de los fármacos , Triticale/metabolismo , Biología Computacional/métodos , Desarrollo Embrionario/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Desarrollo de la Planta/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica/métodos , Triticale/genética
5.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34768798

RESUMEN

To determine the role of α- and γ-tocopherol (TC), this study compared the response to salt stress (200 mM NaCl) in wild type (WT) Arabidopsis thaliana (L.) Heynh. And its two mutants: (1) totally TC-deficient vte1; (2) vte4 accumulating γ-TC instead of α-TC; and (3) tmt transgenic line overaccumulating α-TC. Raman spectra revealed that salt-exposed α-TC accumulating plants were more flexible in regulating chlorophyll, carotenoid and polysaccharide levels than TC deficient mutants, while the plants overaccumulating γ-TC had the lowest levels of these biocompounds. Tocopherol composition and NaCl concentration affected xanthophyll cycle by changing the rate of violaxanthin de-epoxidation and zeaxanthin formation. NaCl treated plants with altered TC composition accumulated less oligosaccharides than WT plants. α-TC deficient plants increased their oligosaccharide levels and reduced maltose amount, while excessive accumulation of α-TC corresponded with enhanced amounts of maltose. Salt-stressed TC-deficient mutants and tmt transgenic line exhibited greater proline levels than WT plants, lower chlorogenic acid levels, and lower activity of catalase and peroxidases. α-TC accumulating plants produced more methylated proline- and glycine- betaines, and showed greater activity of superoxide dismutase than γ-TC deficient plants. Under salt stress, α-TC demonstrated a stronger regulatory effect on carbon- and nitrogen-related metabolites reorganization and modulation of antioxidant patterns than γ-TC. This suggested different links of α- and γ-TCs with various metabolic pathways via various functions and metabolic loops.


Asunto(s)
Arabidopsis/metabolismo , Estrés Salino , Tocoferoles/metabolismo , Arabidopsis/fisiología , Concentración Osmolar , Especies Reactivas de Oxígeno/metabolismo , Xantófilas/metabolismo
6.
Antioxidants (Basel) ; 10(8)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34439502

RESUMEN

Enhanced antioxidant defence plays an essential role in plant survival under stress conditions. However, excessive antioxidant activity sometimes suppresses the signal necessary for the initiation of the desired biological reactions. One such example is microspore embryogenesis (ME)-a process of embryo-like structure formation triggered by stress in immature male gametophytes. The study focused on the role of reactive oxygen species and antioxidant defence in triticale (×Triticosecale Wittm.) and barley (Hordeum vulgare L.) microspore reprogramming. ME was induced through various stress treatments of tillers and its effectiveness was analysed in terms of ascorbate and glutathione contents, total activity of low molecular weight antioxidants and activities of glutathione-ascorbate cycle enzymes. The most effective treatment for both species was a combination of low temperature and exogenous application of 0.3 M mannitol, with or without 0.3 mM reduced glutathione. The applied treatments induced genotype-specific defence responses. In triticale, both ascorbate and glutathione were associated with ME induction, though the role of glutathione did not seem to be related to its function as a reducing agent. In barley, effective ME was accompanied by an accumulation of ascorbate and high activity of enzymes regulating its redox status, without direct relation to glutathione content.

7.
Methods Mol Biol ; 2288: 3-23, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270002

RESUMEN

High frequency of albino plant formation in isolated microspore or anther cultures is a great problem limiting the possibility of their exploitation on a wider scale. It is highly inconvenient as androgenesis-based doubled haploid (DH) technology provides the simplest and shortest way to total homozygosity, highly valued by plant geneticists, biotechnologists and especially, plant breeders, and this phenomenon constitutes a serious limitation of these otherwise powerful tools. The genotype-dependent tendency toward albino plant formation is typical for many monocotyledonous plants, including cereals like wheat, barley, rice, triticale, oat and rye - the most important from the economical point of view. Despite many efforts, the precise mechanism underlying chlorophyll deficiency has not yet been elucidated. In this chapter, we review the data concerning molecular and physiological control over proper/disturbed chloroplast biogenesis, old hypotheses explaining the mechanism of chlorophyll deficiency, and recent studies which shed new light on this phenomenon.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Grano Comestible/fisiología , Pigmentación , Fitomejoramiento/métodos , Clorofila/deficiencia , Clorofila/genética , Diploidia , Grano Comestible/genética , Haploidia , Homocigoto , Modelos Biológicos , Biología Molecular/métodos , Pigmentación/genética , Pigmentos Biológicos/deficiencia , Pigmentos Biológicos/genética , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Regeneración/genética , Regeneración/fisiología
8.
Plant Sci ; 302: 110700, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33288013

RESUMEN

This work presents the biochemical, cytochemical and molecular studies on two groups of PR proteins, ß-1,3-glucanases and chitinases, and the arabinogalactan proteins (AGP) during the early stages of androgenesis induction in two breeding lines of rye (Secale cereale L.) with different androgenic potential. The process of androgenesis was initiated by tillers pre-treatments with low temperature, mannitol and/or reduced glutathione and resulted in microspores reprogramming and formation of androgenic structures what was associated with high activity of ß-1,3-glucanases and chitinases. Some isoforms of ß-1,3-glucanases, namely several acidic isoforms of about 26 kDa; appeared to be anther specific. Chitinases were well represented but were less variable. RT-qPCR revealed that the cold-responsive chitinase genes Chit1 and Chit2 were expressed at a lower level in the microspores and whole anthers while the cold-responsive Glu2 and Glu3 were not active. The stress pre-treatments modifications promoted the AGP accumulation. An apparent dominance of some AGP epitopes (LM2, JIM4 and JIM14) was detected in the androgenesis-responsive rye line. An abundant JIM13 epitopes in the vesicles and inner cell walls of the microspores and in the cell walls of the anther cell layers appeared to be the most specific for embryogenesis.


Asunto(s)
Quitinasas/fisiología , Glucano Endo-1,3-beta-D-Glucosidasa/fisiología , Mucoproteínas/fisiología , Proteínas de Plantas/fisiología , Secale/metabolismo , Quitinasas/metabolismo , Producción de Cultivos/métodos , Flores/crecimiento & desarrollo , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Mucoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Reproducción/fisiología , Secale/enzimología , Secale/fisiología , Estrés Fisiológico
9.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192224

RESUMEN

Plant tolerance to environmental stress is determined by a very complicated network composed of many intra- and extracellular factors. The aim of this study was to select candidate genes involved in responses to freezing and drought in barley on the basis of previous proteomic studies and to analyze changes in their expression caused by application of both stress factors. Six candidate genes for freezing tolerance (namely the genes encoding elongation factor 1 alpha (EF1A), ferredoxin-NADP reductase, a 14-3-3a protein, ß-fructofuranosidase, CBF2A and CBF4B) and six for drought tolerance (encoding transketolase, periplasmic serine protease, triosephosphate isomerase, a protein with a co-chaperon region (GroEs), pfam14200 and actin) were chosen arbitrarily on the basis of in silico bioinformatic analyses. The expression levels of these genes were measured under control and stress conditions in six DH (doubled haploid) lines with differing freezing and drought tolerance. The results of gene expression analysis confirmed the roles of the candidate genes preselected in this study on the basis of previous proteome analysis in contributing to the differences in freezing and drought tolerance observed in the studied population of DH lines of winter barley.


Asunto(s)
Sequías , Congelación , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Haploidia , Hordeum/fisiología , Proteoma , Estrés Fisiológico , Adaptación Biológica , Sistemas de Lectura Abierta , Proteómica/métodos
10.
Plant Sci ; 287: 110189, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31481211

RESUMEN

Microspores exposed to some stress factors may display cell totipotency and could be reprogrammed towards embryogenic development. Plant breeding and genetic engineering widely use haploids/doubled haploids (DHs) derived from in vitro-cultured microspores, but the mechanism of this process remains poorly understood. Recently published data suggest that microspore embryogenesis (ME) is accompanied by changes in DNA methylation and chromatin reorganization. Here, we used two triticale DH lines (DH19 and DH28), significantly different with respect to embryogenic potential. To change DNA methylation levels, we applied two cytosine-analogs: 5-azacytidine (AC) and 2'-deoxy-5-azacytidine (DAC) treatments. We found that chemically-induced DNA demethylation caused chromatin relaxation and dysregulation of marker genes (TaTPD1-like, GSTF2, GSTA2, CHI3, Tad1, TaNF-YA7, SERK2, TaME1) related to ME. Both drugs showed significant cytotoxicity in a dose-dependent manner. We noticed that lines varied in terms of overall DNA methylation levels and responded in a different way to hypomethylation caused by the drugs. DH19 (low embryogenic) after inhibitors treatment, showed higher microspore viability, but its recalcitrancy was not overcome. For highly embryogenic DH28, we noted significantly higher effectiveness of embryo-like structure production and plant regeneration. In summary, our study provides new insight into the role of DNA methylation in ME initiation. They suggest potential benefits resulting from the utilization of epigenetic inhibitors to improve the process of DHs production.


Asunto(s)
Triticale/genética , Cruzamiento , Metilación de ADN , ADN de Plantas/genética , Haploidia , Polen/embriología , Polen/genética , Triticale/embriología
11.
Plant Cell Rep ; 38(2): 195-209, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30499031

RESUMEN

KEY MESSAGE: Depending on the capability for stress adaptation, the role played by glutathione in microspore embryogenesis consists of both antioxidative activity and stimulation of embryo-like structure development. The efficiency of microspore embryogenesis (ME) is determined by the complex network of internal and environmental factors. Among them, the efficient defence against oxidative stress seems to be one of the most important. The present study confirms this hypothesis showing the positive effect of glutathione-the most abundant cellular antioxidant-on ME in isolated microspore cultures of triticale (× Triticosecale Wittm.). For the first time, low temperature (LT) pre-treatment of tillers was combined with the exogenous application of glutathione and associated with the total activity of low-molecular weight antioxidants, the endogenous content and redox status of glutathione, and the effectiveness of ME. The results indicate that efficient antioxidative defence is the first, although not the only, prerequisite for effective ME. In responsive genotypes, LT alone stimulated antioxidative defence and decreased cell redox status, which was associated with increased cell viability and high frequency (ca. 20%) of microspore reprogramming. Application of glutathione had no effect either on the microspore viability or on the initial number of embryogenic microspores. However, it increased the number of embryo-like structures, probably by stimulating the next phases of its development. In recalcitrant genotypes, the main role of glutathione seems to be its participation in cell protection from oxidative stress. However, even enhanced antioxidative activity, which sustained cell viability and increased the number of embryogenic microspores, was insufficient for efficient haploid/doubled haploid plant production. Evidently, there are still other defective elements in the complex network of factors that regulate the process of ME.


Asunto(s)
Antioxidantes/metabolismo , Glutatión/metabolismo , Polen/embriología , Técnicas de Cultivo de Tejidos/métodos , Triticale/embriología , Frío , Peso Molecular , Oxidación-Reducción , Regeneración
12.
J Proteomics ; 169: 58-72, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28847648

RESUMEN

The changes in protein abundance induced by cold hardening were analysed by 2 DE in ten doubled haploid (DH) lines of winter barley, highly differentiated with respect to freezing tolerance level. Among 45 differential proteins identified by MALDI-TOF/TOF, the majority was classified as related to photosynthesis, carbohydrate metabolism, oxidation-reduction reactions and stress response. Among the detected proteins, higher abundance of RuBisCO large and small subunits, RuBisCO activase, two Oxygen-evolving enhancer proteins, Ferredoxin-NADP reductase, Cytochrome P450-dependent fatty acid hydroxylase and 14-3-3 protein was associated with higher freezing tolerance level. Lower relative level of hypothetical ATP synthase beta subunit, uncharacterized mitochondrial protein AtMg00810 and ribosomal RNA small subunit methyltransferase G also seems to be important. The results of proteomic studies were complemented by the evaluation of photosynthetic apparatus acclimation, showing distinctive differences between the studied genotypes in the number of active PSII reaction centres (RC/CSm). Additionally, the analysis of antioxidative enzyme activities suggests the importance of H2O2 as a signalling molecule possibly involved in the initiation of cold-induced plant acclimation. However, in DH lines with high freezing tolerance, H2O2 generation during cold hardening treatment was accompanied by more stable activity of catalase, H2O2-decomposing enzyme. SIGNIFICANCE: In the study, the changes in protein abundance induced by cold hardening treatment were analysed by two-dimensional gel electrophoresis in ten doubled haploid (DH) lines of winter barley. Harnessing DH technology resulted in distinctive widening of genetic variation with respect to freezing tolerance level. Both the cold-hardening effect on the protein pattern in an individual winter barley DH line as well as the variation among the selected DH lines were investigated, which resulted in the identification of 45 differentiated proteins classified as involved in 14 metabolic pathways and cellular processes. Among them, eight proteins: (1) the precursor of RuBisCO large subunit, (2) RuBisCO small subunit (partial), (3) RuBisCO activase small isoform, (4) the precursor of Oxygen-evolving enhancer protein 1-like (predicted protein), (5) Oxygen-evolving enhancer protein 2, (6) the leaf isozyme of Ferredoxin-NADP reductase, (7) hypothetical protein M569_12509 Cytochrome P450-dependent fatty acid hydroxylase-like and (8) hypothetical protein BRADI_1g11290 (14-3-3 protein A-like) were accumulated to a higher level in leaves of cold-hardened seedlings of freezing tolerant winter barley DH lines in comparison with susceptible ones. Three others: (9) hypothetical protein BRADI_5g05668 F1 ATP synthase beta subunit-like, (10) predicted protein uncharacterized mitochondrial protein AtMg00810-like and (11) BnaA02g08010D Ribosomal RNA small subunit methyltransferase G-like were detected at lower level in freezing tolerant seedlings in comparison with susceptible genotypes. The last two were for the first time linked to cold acclimation. The results of complementary analyses indicate that PSII activity and stability of antioxidative enzymes under low temperature are also very important for freezing tolerance acquisition.


Asunto(s)
Aclimatación/fisiología , Hordeum/química , Proteínas de Plantas/metabolismo , Proteómica/métodos , Electroforesis en Gel Bidimensional , Congelación , Hordeum/fisiología , Oxidorreductasas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
13.
J Proteomics ; 169: 73-86, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28751243

RESUMEN

The present study investigated drought-induced changes in proteome profiles of ten DH lines of winter barley, relatively varied in water deficit tolerance level. Additionally, the parameters describing the functioning of the photosynthetic apparatus and the activity of the antioxidative system were analysed. Water deficit (3-week growth in soil with water content reduced to ca. 35%) induced significant changes in leaf water relations and reduced photosynthetic activity, probably due to decreased stomatal conductance. It was associated with changes in protein abundance and altered activity of antioxidative enzymes. From 47 MS-identified proteins discriminating more tolerant from drought-sensitive genotypes, only two revealed distinctly higher while seven revealed lower abundance in drought-treated plants of tolerant DH lines in comparison to sensitive ones. The majority were involved in the dark phase of photosynthesis. Another factor of great importance seems to be the ability to sustain, during drought stress, relatively high activity of enzymes (SOD and CAT) decomposing reactive oxygen species and protecting plant cell from oxidative damages. Low molecular weight antioxidants seem to play less important roles. Our findings also suggest that high tolerance to drought stress in barley is a constitutively controlled trait regulated by the rate of protein synthesis and their activity level. BIOLOGICAL SIGNIFICANCE: According to our knowledge, this is the first comparative proteomic analysis of drought tolerance performed for the model set of several winter barley doubled haploid (DH) lines. We analysed both the drought impact on the protein pattern of individual winter barley DH lines as well as comparisons between them according to their level of drought tolerance. We have identified 47 proteins discriminating drought-tolerant from drought-sensitive genotypes. The majority was involved in the dark phase of photosynthesis. Another factor of great importance in our opinion seems to be the ability to sustain, during drought stress, relatively high activity of antioxidative enzymes (SOD and CAT) decomposing reactive oxygen species and protecting plant cell from oxidative damages. Our findings also suggest that high tolerance to drought stress in barley is a constitutively-controlled trait regulated by the rate of protein synthesis and their activity level.


Asunto(s)
Aclimatación/fisiología , Sequías , Hordeum/química , Proteínas de Plantas/metabolismo , Proteómica/métodos , Adaptación Biológica , Regulación de la Expresión Génica de las Plantas , Genotipo , Hordeum/fisiología , Oxidorreductasas/metabolismo , Fotosíntesis , Proteínas de Plantas/genética
14.
Front Plant Sci ; 6: 424, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26113852

RESUMEN

Plant growth regulator (PGR) crosstalk and interaction with the plant's genotype and environmental factors play a crucial role in microspore embryogenesis (ME), controlling microspore-derived embryo differentiation and development as well as haploid/doubled haploid plant regeneration. The complexity of the PGR network which could exist at the level of biosynthesis, distribution, gene expression or signaling pathways, renders the creation of an integrated model of ME-control crosstalk impossible at present. However, the analysis of the published data together with the results received recently with the use of modern analytical techniques brings new insights into hormonal regulation of this process. This review presents a short historical overview of the most important milestones in the recognition of hormonal requirements for effective ME in the most important crop plant species and complements it with new concepts that evolved over the last decade of ME studies.

15.
Plant Cell Rep ; 34(1): 47-62, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25261160

RESUMEN

KEY MESSAGE: Effective microspore embryogenesis in triticale is determined by a specific hormonal homeostasis: low value of IAA/cytokinins, IAA/ABA and cytokinins/ABA ratios as well as proper endogenous/exogenous auxin balance, which favours androgenic structure formation and green plant regeneration ability. The concentration of plant growth regulators (PGRs): auxins (Auxs), cytokinins (CKs) and abscisic acid (ABA) was measured in anthers of eight DH lines of triticale (× Triticosecale Wittm.), and associated with microspore embryogenesis (ME) responsiveness. The analysis was conducted on anthers excised from control tillers at the phase optimal for ME induction and then after ME-initiating tillers treatment (21 days at 4 °C). In control, IAA predominated among Auxs (11-39 nmol g(-1) DW), with IBA constituting only 1 % of total Auxs content. The prevailing isoforms of CKs were cis isomers of zeatin (121-424 pmol g(-1) DW) and zeatin ryboside (cZR, 146-432 pmol g(-1) DW). Surprisingly, a relatively high level (10-64 pmol g(-1) DW) of kinetin (KIN) was detected. Cold treatment significantly changed the levels of all analysed PGRs. The anthers of 'responsive' DH lines contained higher concentrations of IBA, cis and trans zeatin, cZR and ABA, and lower amount of IAA and KIN in comparison with 'recalcitrant' genotypes. However, the effects of exogenous ABA, p-chlorophenoxyisobutyric acid (PCIB) and 2,3,5-triiodobenzoic acid treatments suggest that none of the studied PGRs acts alone in the acquisition of embryogenic competency, which seems to be an effect of concerted PGRs crosstalk. The initiation of ME required a certain threshold level of ABA. A crucial prerequisite for high ME effectiveness was a specific PGRs homeostasis: lower Auxs level in comparison with CKs and ABA, and lower CKs/ABA ratio. A proper balance between endogenous Auxs in anthers and exogenous Auxs supplied by culture media was also essential.


Asunto(s)
Grano Comestible/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Poaceae/metabolismo , Polen/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Transporte Biológico/efectos de los fármacos , Células Cultivadas , Ácido Clofíbrico/farmacología , Frío , Citocininas/metabolismo , Citocininas/farmacología , Grano Comestible/citología , Grano Comestible/genética , Genotipo , Inmunohistoquímica , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Microscopía Fluorescente , Reguladores del Crecimiento de las Plantas/farmacología , Técnicas de Embriogénesis Somática de Plantas/métodos , Poaceae/citología , Poaceae/genética , Polen/embriología , Polen/genética , Análisis de Componente Principal , Regeneración/efectos de los fármacos , Regeneración/genética , Ácidos Triyodobenzoicos/farmacología
16.
Protoplasma ; 251(5): 1077-87, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24553810

RESUMEN

Plant embryogenesis is regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients during microspore embryogenesis remain to be identified. For the first time, we describe, using the DR5 or DR5rev reporter gene systems, the GFP- and GUS-based auxin biosensors to monitor auxin during Brassica napus androgenesis at cellular resolution in the initial stages. Our study provides evidence that the distribution of auxin changes during embryo development and depends on the temperature-inducible in vitro culture conditions. For this, microspores (mcs) were induced to embryogenesis by heat treatment and then subjected to genetic modification via Agrobacterium tumefaciens. The duration of high temperature treatment had a significant influence on auxin distribution in isolated and in vitro-cultured microspores and on microspore-derived embryo development. In the "mild" heat-treated (1 day at 32 °C) mcs, auxin localized in a polar way already at the uni-nucleate microspore, which was critical for the initiation of embryos with suspensor-like structure. Assuming a mean mcs radius of 20 µm, endogenous auxin content in a single cell corresponded to concentration of 1.01 µM. In mcs subjected to a prolonged heat (5 days at 32 °C), although auxin concentration increased dozen times, auxin polarization was set up at a few-celled pro-embryos without suspensor. Those embryos were enclosed in the outer wall called the exine. The exine rupture was accompanied by the auxin gradient polarization. Relative quantitative estimation of auxin, using time-lapse imaging, revealed that primordia possess up to 1.3-fold higher amounts than those found in the root apices of transgenic MDEs in the presence of exogenous auxin. Our results show, for the first time, which concentration of endogenous auxin coincides with the first cell division and how the high temperature interplays with auxin, by what affects delay early establishing microspore polarity. Moreover, we present how the local auxin accumulation demonstrates the apical-basal axis formation of the androgenic embryo and directs the axiality of the adult haploid plant.


Asunto(s)
Brassica napus/embriología , Respuesta al Choque Térmico/genética , Ácidos Indolacéticos/metabolismo , Polen/embriología , Agrobacterium tumefaciens/genética , Técnicas Biosensibles , Brassica napus/citología , Brassica napus/genética , División Celular/genética , Proteínas Fluorescentes Verdes/genética , Calor , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polen/citología , Polen/genética , Regiones Promotoras Genéticas/genética , Transformación Genética/genética
17.
Plant Cell Rep ; 32(9): 1465-75, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23736307

RESUMEN

KEY MESSAGE: A better understanding of androgenesis with a focus on the changes in plasma membrane fluidity and endogenous ABA content affecting embryogenesis induction in microspore suspension of B. napus. Changes in plasma membrane fluidity (MF) and ABA content associated with androgenesis induction were under the study. Both parameters were monitored in microspores of two Brassica napus L. genotypes differing in their response to androgenic induction under heat (1 day at 32 °C). MF was assessed by DPH method. ABA content was evaluated by ELISA. Heat caused microspores' plasma membrane to become more rigid. Lower MF in microspores of 'DH 4079' (of high androgenic potential) seems to maintain proper cell protection and leads to efficient embryogenesis induction. Plasma membrane remodelling coincided with changes of ABA content in microspores and in the culture medium in both genotypes. ABA concentration (µM) and ABA content (fmol per 10(4) microspores or pmol g(-1) FW) were for the first time measured in microspores. ABA concentration (µM) in microspores and in the culture medium (nM) differed significantly for the genotype and the treatment. The interaction between both variables was also significant. In general, ABA content ranged from <3.5 to 87.1 fmol per 10(4) microspores. The highest content of ABA was detected in 'DH 4079' microspores at 32 °C. Assuming a mean microspores' radius of 10 µm, it corresponds to ABA concentration of 2.1 µM. Heat shock resulted in quantum of medium pH reduction (0.1-0.2) and increased levels of ABA in microspores and in the medium of both tested genotypes. However, heat induced increase of ABA content in microspores of non-responsive 'Campino' had no clear-cut impact, on androgenesis induction efficiency, which suggests a more complex mechanism of process initiation.


Asunto(s)
Ácido Abscísico/metabolismo , Brassica napus/genética , Membrana Celular/metabolismo , Fluidez de la Membrana , Polen/citología , Brassica napus/crecimiento & desarrollo , Flores/metabolismo , Genotipo , Calor , Polen/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...