Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Public Health ; 24(1): 2152, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118100

RESUMEN

BACKGROUND: The impact of obesity on cognitive function has engendered considerable interest. Weight-adjusted waist index (WWI) has emerged as a novel and innovative marker of obesity that reflects weight-independent abdominal obesity. However, the association between WWI and cognitive function remains unclear. To address this gap, the present study aims to explore the relationship between weight-adjusted waist index (WWI) and cognitive performance in older adults. METHODS: We conducted a cross-sectional investigation using datasets from the National Health and Nutrition Examination Survey (NHANES) 2011-2014. The study included 3,472 participants (48.59% male, 51.41% female) of various races (Mexican American, Other Hispanic, Non-Hispanic White, Non-Hispanic Black, and Other), with a mean age of 69.95 years (SD = 6.94). Multivariate regression and smoothing curve fitting were used to investigate the linear and nonlinear relationship between WWI and cognitive performance in the following domains: learning and memory, verbal fluency, and processing speed, as measured by Consortium to Establish a Registry for Alzheimer's Disease Word Learning subtest (CERAD-WL), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST), respectively. Subgroup analysis and interaction tests were conducted to examine the stability of this relationship across groups. Machine learning models based on random forests were used to analyze the predictive performance of WWI for cognitive function. RESULTS: A total of 3,472 participants were included in the analysis. The results revealed significant negative associations between WWI and low scores on the CERAD-WL [-0.96 (-1.30, -0.62)], AFT [-0.77 (-1.05, -0.49)], and DSST [-3.67 (-4.55, -2.79)]. This relationship remained stable after converting WWI to a categorical variable. In addition, this significant negative association was more pronounced in men than women and diminished with advancing age. Non-linear threshold effects were observed, with correlations intensifying between WWI and CERAD-WL when WWI surpassed 12.25, AFT when WWI surpassed 11.54, and DSST when WWI surpassed 11.66. CONCLUSIONS: A higher WWI, indicating increased abdominal obesity, was associated with deficits in learning, memory, verbal fluency, and processing speed among older adults. These findings suggest that abdominal obesity may play a crucial role in cognitive decline in this population. The stronger relationship observed between WWI and cognition in men highlights the need for gender-specific considerations in interventions targeting abdominal obesity. The results demonstrate the importance of interventions targeting abdominal obesity to preserve cognitive performance in older adults.


Asunto(s)
Cognición , Encuestas Nutricionales , Humanos , Masculino , Femenino , Estudios Transversales , Anciano , Cognición/fisiología , Persona de Mediana Edad , Estados Unidos/epidemiología , Circunferencia de la Cintura , Anciano de 80 o más Años , Obesidad/epidemiología , Peso Corporal
2.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125949

RESUMEN

Proteins, as crucial macromolecules performing diverse biological roles, are central to numerous biological processes. The ability to predict changes in protein thermal stability due to mutations is vital for both biomedical research and industrial applications. However, existing experimental methods are often costly and labor-intensive, while structure-based prediction methods demand significant computational resources. In this study, we introduce PON-Tm, a novel sequence-based method for predicting mutation-induced thermal stability variations in proteins. PON-Tm not only incorporates features predicted by a protein language model from protein sequences but also considers environmental factors such as pH and the thermostability of the wild-type protein. To evaluate the effectiveness of PON-Tm, we compared its performance to four well-established methods, and PON-Tm exhibited superior predictive capabilities. Furthermore, to facilitate easy access and utilization, we have developed a web server.


Asunto(s)
Mutación Missense , Estabilidad Proteica , Proteínas , Proteínas/química , Proteínas/genética , Biología Computacional/métodos , Secuencia de Aminoácidos , Programas Informáticos
3.
Cell Mol Life Sci ; 81(1): 256, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866991

RESUMEN

Pulmonary hypertension (PH) is characterized by vascular remodeling predominantly driven by a phenotypic switching in pulmonary artery smooth muscle cells (PASMCs). However, the underlying mechanisms for this phenotypic alteration remain incompletely understood. Here, we identified that RNA methyltransferase METTL3 is significantly elevated in the lungs of hypoxic PH (HPH) mice and rats, as well as in the pulmonary arteries (PAs) of HPH rats. Targeted deletion of Mettl3 in smooth muscle cells exacerbated hemodynamic consequences of hypoxia-induced PH and accelerated pulmonary vascular remodeling in vivo. Additionally, the absence of METTL3 markedly induced phenotypic switching in PASMCs in vitro. Mechanistically, METTL3 depletion attenuated m6A modification and hindered the processing of pri-miR-143/145, leading to a downregulation of miR-143-3p and miR-145-5p. Inhibition of hnRNPA2B1, an m6A mediator involved in miRNA maturation, similarly resulted in a significant reduction of miR-143-3p and miR-145-5p. We demonstrated that miR-145-5p targets Krüppel-like factor 4 (KLF4) and miR-143-3p targets fascin actin-bundling protein 1 (FSCN1) in PASMCs. The decrease of miR-145-5p subsequently induced an upregulation of KLF4, which in turn suppressed miR-143/145 transcription, establishing a positive feedback circuit between KLF4 and miR-143/145. This regulatory circuit facilitates the persistent suppression of contractile marker genes, thereby sustaining PASMC phenotypic switch. Collectively, hypoxia-induced upregulation of METTL3, along with m6A mediated regulation of miR-143/145, might serve as a protective mechanism against phenotypic switch of PASMCs. Our results highlight a potential therapeutic strategy targeting m6A modified miR-143/145-KLF4 loop in the treatment of PH.


Asunto(s)
Adenosina , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Metiltransferasas , MicroARNs , Miocitos del Músculo Liso , Arteria Pulmonar , Factor 4 Similar a Kruppel/metabolismo , Animales , MicroARNs/genética , MicroARNs/metabolismo , Arteria Pulmonar/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Miocitos del Músculo Liso/metabolismo , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratas , Fenotipo , Masculino , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Músculo Liso Vascular/metabolismo , Ratones Endogámicos C57BL , Remodelación Vascular/genética , Ratas Sprague-Dawley , Humanos
4.
Cell Mol Biol Lett ; 29(1): 69, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741032

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is a progressive disease characterized by pulmonary vascular remodeling. Increasing evidence indicates that endothelial-to-mesenchymal transition (EndMT) in pulmonary artery endothelial cells (PAECs) is a pivotal trigger initiating this remodeling. However, the regulatory mechanisms underlying EndMT in PH are still not fully understood. METHODS: Cytokine-induced hPAECs were assessed using RNA methylation quantification, qRT-PCR, and western blotting to determine the involvement of N6-methyladenosine (m6A) methylation in EndMT. Lentivirus-mediated silencing, overexpression, tube formation, and wound healing assays were utilized to investigate the function of METTL3 in EndMT. Endothelial-specific gene knockout, hemodynamic measurement, and immunostaining were performed to explore the roles of METTL3 in pulmonary vascular remodeling and PH. RNA-seq, RNA Immunoprecipitation-based qPCR, mRNA stability assay, m6A mutation, and dual-luciferase assays were employed to elucidate the mechanisms of RNA methylation in EndMT. RESULTS: The global levels of m6A and METTL3 expression were found to decrease in TNF-α- and TGF-ß1-induced EndMT in human PAECs (hPAECs). METTL3 inhibition led to reduced endothelial markers (CD31 and VE-cadherin) and increased mesenchymal markers (SM22 and N-cadherin) as well as EndMT-related transcription factors (Snail, Zeb1, Zeb2, and Slug). The endothelial-specific knockout of Mettl3 promoted EndMT and exacerbated pulmonary vascular remodeling and hypoxia-induced PH (HPH) in mice. Mechanistically, METTL3-mediated m6A modification of kruppel-like factor 2 (KLF2) plays a crucial role in the EndMT process. KLF2 overexpression increased CD31 and VE-cadherin levels while decreasing SM22, N-cadherin, and EndMT-related transcription factors, thereby mitigating EndMT in PH. Mutations in the m6A site of KLF2 mRNA compromise KLF2 expression, subsequently diminishing its protective effect against EndMT. Furthermore, KLF2 modulates SM22 expression through direct binding to its promoter. CONCLUSIONS: Our findings unveil a novel METTL3/KLF2 pathway critical for protecting hPAECs against EndMT, highlighting a promising avenue for therapeutic investigation in PH.


Asunto(s)
Adenosina , Células Endoteliales , Transición Epitelial-Mesenquimal , Hipertensión Pulmonar , Factores de Transcripción de Tipo Kruppel , Metiltransferasas , Animales , Humanos , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Cadherinas/metabolismo , Cadherinas/genética , Células Cultivadas , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Metilación , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratones Endogámicos C57BL , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Remodelación Vascular/genética
5.
iScience ; 27(2): 108815, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38322991

RESUMEN

Hypoxia-induced pulmonary hypertension (HPH) is a fatal cardiovascular disease characterized by an elevation in pulmonary artery pressure, resulting in right ventricular dysfunction and eventual heart failure. Exploring the pathogenesis of HPH is crucial, and small noncoding RNAs (sncRNAs) are gaining recognition as potential regulators of cellular responses to hypoxia. In this study, we conducted a comprehensive analysis of sncRNA profiles in eight tissues of male HPH rats using high-throughput sequencing. Our study unveiled several sncRNAs, with the brain, kidney, and spleen exhibiting the highest abundance of microRNA (miRNA), tRNA-derived small RNA (tDR), and small nucleolar RNA (snoRNA), respectively. Moreover, we identified numerous tissue-specific and hypoxia-responsive sncRNAs, particularly miRNAs and tDRs. Interestingly, we observed arm switching in miRNAs under hypoxic conditions and a significant increase in the abundance of 5' tRNA-halves among the total tDRs during hypoxia. Overall, our study provides a comprehensive characterization of the sncRNA profiles in HPH rats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...