Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1178, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331994

RESUMEN

Unravelling biosphere feedback mechanisms is crucial for predicting the impacts of global warming. Soil priming, an effect of fresh plant-derived carbon (C) on native soil organic carbon (SOC) decomposition, is a key feedback mechanism that could release large amounts of soil C into the atmosphere. However, the impacts of climate warming on soil priming remain elusive. Here, we show that experimental warming accelerates soil priming by 12.7% in a temperate grassland. Warming alters bacterial communities, with 38% of unique active phylotypes detected under warming. The functional genes essential for soil C decomposition are also stimulated, which could be linked to priming effects. We incorporate lab-derived information into an ecosystem model showing that model parameter uncertainty can be reduced by 32-37%. Model simulations from 2010 to 2016 indicate an increase in soil C decomposition under warming, with a 9.1% rise in priming-induced CO2 emissions. If our findings can be generalized to other ecosystems over an extended period of time, soil priming could play an important role in terrestrial C cycle feedbacks and climate change.


Asunto(s)
Ecosistema , Pradera , Suelo , Carbono , Cambio Climático
2.
Nat Microbiol ; 7(7): 1054-1062, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35697795

RESUMEN

Anthropogenic climate change threatens ecosystem functioning. Soil biodiversity is essential for maintaining the health of terrestrial systems, but how climate change affects the richness and abundance of soil microbial communities remains unresolved. We examined the effects of warming, altered precipitation and annual biomass removal on grassland soil bacterial, fungal and protistan communities over 7 years to determine how these representative climate changes impact microbial biodiversity and ecosystem functioning. We show that experimental warming and the concomitant reductions in soil moisture play a predominant role in shaping microbial biodiversity by decreasing the richness of bacteria (9.6%), fungi (14.5%) and protists (7.5%). Our results also show positive associations between microbial biodiversity and ecosystem functional processes, such as gross primary productivity and microbial biomass. We conclude that the detrimental effects of biodiversity loss might be more severe in a warmer world.


Asunto(s)
Pradera , Suelo , Bacterias , Biodiversidad , Ecosistema , Microbiología del Suelo
3.
ISME J ; 16(1): 10-25, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34211103

RESUMEN

Switchgrass is a deep-rooted perennial native to the US prairies and an attractive feedstock for bioenergy production; when cultivated on marginal soils it can provide a potential mechanism to sequester and accumulate soil carbon (C). However, the impacts of switchgrass establishment on soil biotic/abiotic properties are poorly understood. Additionally, few studies have reported the effects of switchgrass cultivation on marginal lands that have low soil nutrient quality (N/P) or in areas that have experienced high rates of soil erosion. Here, we report a comparative analyses of soil greenhouse gases (GHG), soil chemistry, and microbial communities in two contrasting soil types (with or without switchgrass) over 17 months (1428 soil samples). These soils are highly eroded, 'Dust Bowl' remnant field sites in southern Oklahoma, USA. Our results revealed that soil C significantly increased at the sandy-loam (SL) site, but not at the clay-loam (CL) site. Significantly higher CO2 flux was observed from the CL switchgrass site, along with reduced microbial diversity (both alpha and beta). Strikingly, methane (CH4) consumption was significantly reduced by an estimated 39 and 47% at the SL and CL switchgrass sites, respectively. Together, our results suggest that soil C stocks and GHG fluxes are distinctly different at highly degraded sites when switchgrass has been cultivated, implying that carbon balance considerations should be accounted for to fully evaluate the sustainability of deep-rooted perennial grass cultivation in marginal lands.


Asunto(s)
Panicum , Suelo , Carbono , Dióxido de Carbono/análisis , Metano , Óxido Nitroso/análisis , Suelo/química
4.
mLife ; 1(4): 399-411, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38818486

RESUMEN

Higher biodiversity is often assumed to be a more desirable scenario for maintaining the functioning of ecosystems, but whether species-richer communities are also more disturbance-tolerant remains controversial. In this study, we investigated the bacterial communities based on 472 soil samples from 28 forests across China with associated edaphic and climatic properties. We developed two indexes (i.e., community mean tolerance breadth [CMTB] and community mean response asynchrony [CMRA]) to explore the relationship between diversity and community resistance potential. Moreover, we examined this resistance potential along the climatic and latitudinal gradients. We revealed that CMTB was significantly and negatively related to species richness, resulting from the changes in balance between relative abundances of putative specialists and generalists. In comparison, we found a unimodal relationship between CMRA and richness, suggesting that higher biodiversity might not always lead to higher community resistance. Moreover, our results showed differential local patterns along latitude. In particular, local patterns in the northern region mainly followed general relationships rather than those for the southern forests, which may be attributed to the differences in annual means and annual variations of climate conditions. Our findings highlight that the community resistance potential depends on the composition of diverse species with differential environmental tolerance and responses. This study provides a new, testable evaluation by considering tolerance breadth and response asynchrony at the community level, which will be helpful in assessing the influence of disturbance under rapid shifts in biodiversity and species composition as a result of global environmental change.

5.
Glob Chang Biol ; 27(22): 5963-5975, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34403163

RESUMEN

Understanding the influences of global climate change on soil microbial communities is essential in evaluating the terrestrial biosphere's feedback to this alarming anthropogenic disturbance. However, little is known about how intra-site historical climate variability can mediate the influences of current climate differences on community dissimilarity and assembly. To fill this gap, we examined and disentangled the interactive effects of historical climate variability and current climate differences on the soil bacterial community dissimilarity and stochasticity of community assembly among 143 sites from 28 forests across eastern China. We hypothesize that the relative importance of stochasticity and community dissimilarity are related to historical climate variability and that an increasing sum of intra-site historical variability enhances stochasticity while reduces dissimilarity between two communities. To test our hypothesis, we statistically controlled for covariates between sites including differences in soil chemistry, plant diversity, spatial distance, and seasonal climate variations at annual timescales. We observed that an increase in inter-site current climate differences led to a reduced impact of stochasticity in community assembly and a pronounced divergence between communities. In stark contrast, when communities were subjected to a high level of intra-site historical climate fluctuation, the observed impact incurred from current climate differences was substantially weakened. Moreover, the influence of increased historical variability was consistent along the gradient of current temperature differences between sites. However, effects induced by historical fluctuation in precipitation were disproportional and only evident when small inter-site differences were observed. Consequently, if the prior climate variability is ignored, especially regarding environmental factors like temperature, we assert that the influence current climate differentiation has on regulating community dissimilarity and assembly stochasticity will be underestimated. Together, our findings highlight the importance and need of explicitly controlling the mean and the historical variability of climate factors for the next "generation" of climate change experiments to come.


Asunto(s)
Microbiota , Microbiología del Suelo , Bacterias , Bosques , Suelo
6.
ISME Commun ; 1(1): 65, 2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36755184

RESUMEN

Plant roots harbor and interact with diverse fungal species. By changing these belowground fungal communities, focal plants can affect the performance of surrounding individuals and the outcome of coexistence. Although highly host related, the roles of these root-associated fungal communities per se in host plant spatial co-occurrence is largely unknown. Here, we evaluated the host dependency of root-associated communities for 39-plant species spatially mapped throughout a 50-ha subtropical forest plot with relevant environmental properties. In addition, we explored whether the differentiation in root fungal associations among plant species can reflect their observed co-occurrence patterns. We demonstrated a strong host-dependency by discriminating the differentiation of root-associated fungal communities regardless of background soil heterogeneity. Furthermore, Random Forest modeling indicated that these nonrandom root fungal associations significantly increased our ability to explain spatial co-occurrence patterns, and to a greater degree than the relative abundance, phylogenetic relatedness, and functional traits of the host plants. Our results further suggested that plants harbor more abundant shared, "generalist" pathogens are likely segregated, while hosting more abundant unique, "specialist" ectomycorrhizal fungi might be an important strategy for promoting spatial aggregation, particularly between early established trees and the heterospecific adults. Together, we provide a conceptual and testable approach to integrate this host-dependent root fungal "fingerprinting" into the plant diversity patterns. We highlight that this approach is complementary to the classic cultivation-based scheme and can deepen our understanding of the community-level effect from overall fungi and its contribution to the pairwise plant dynamics in local species-rich communities.

7.
ISME Commun ; 1(1): 23, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37938613

RESUMEN

Obligate and non-obligate organohalide-respiring bacteria (OHRB) play central roles in the geochemical cycling and environmental bioremediation of organohalides. Their coexistence and interactions may provide functional redundancy and community stability to assure organohalide respiration efficiency but, at the same time, complicate isolation and characterization of specific OHRB. Here, we employed a growth rate/yield tradeoff strategy to enrich and isolate a rare non-obligate tetrachloroethene (PCE)-respiring Geobacter from a Dehalococcoides-predominant microcosm, providing experimental evidence for the rate/yield tradeoff theory in population selection. Surprisingly, further physiological and genomic characterizations, together with co-culture experiments, revealed three unique interactions (i.e., free competition, conditional competition and syntrophic cooperation) between Geobacter and Dehalococcoides for their respiration of PCE and polychlorinated biphenyls (PCBs), depending on both the feeding electron donors (acetate/H2 vs. propionate) and electron acceptors (PCE vs. PCBs). This study provides the first insight into substrate-dependent interactions between obligate and non-obligate OHRB, as well as a new strategy to isolate fastidious microorganisms, for better understanding of the geochemical cycling and bioremediation of organohalides.

8.
Ecology ; 101(8): e03053, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32242918

RESUMEN

Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high-throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long-term (13 yr), multi-level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m-2 ·yr-1 , but decreased substantially when N input exceeded 32 g N·m-2 ·yr-1 . A meta-analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m-2 ·yr-1 . Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low-diversity state.


Asunto(s)
Nitrógeno , Suelo , China , Ecosistema , Nitrógeno/análisis , ARN Ribosómico 16S/genética , Microbiología del Suelo
9.
FEMS Microbiol Ecol ; 93(10)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29028230

RESUMEN

Microbial community composition is essential for aquatic ecosystem functions and has been explored across diverse environments and various spatial scales. However, documented patterns are often based on samples from spatially/geographically separated locations or sites. Here, we define sampling volume as spatial scale and examine (by Illumina 16S rRNA sequencing) microbial community composition over a scale of 1 mL to 10 L in an acid mine drainage. ß-Diversity analysis revealed that all samples grouped very tightly according to spatial scales and variations between every two scales were significant. Notably, mean ß-diversity within each group was negatively correlated with spatial scales, indicating patchy microbial distribution. Partition of ß-diversity further revealed that it was the relative abundances of some microbial taxa that largely changed among spatial scales. Phylogenetic analysis showed that microbial lineages were not randomly distributed, but displayed a tendency of more phylogenetically clustering at smaller spatial scales. Thus, we documented fine-scale spatial patterns in microbial community composition within a continuous aquatic environment, which may have practical implications for adequate sampling of aquatic systems in future studies.


Asunto(s)
Bacterias/clasificación , Minería , Aguas Residuales/microbiología , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Ecosistema , Ambiente , Concentración de Iones de Hidrógeno , Filogenia , ARN Ribosómico 16S/genética
10.
Front Microbiol ; 8: 1486, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848508

RESUMEN

Understanding microbial interactions is essential to decipher the mechanisms of community assembly and their effects on ecosystem functioning, however, the conservation of species- and trait-based network interactions along environmental gradient remains largely unknown. Here, by using the network-based analyses with three paralleled data sets derived from 16S rRNA gene pyrosequencing, functional microarray, and predicted metagenome, we test our hypothesis that the network interactions of traits are more conserved than those of taxonomic measures, with significantly lower variation of network characteristics along the environmental gradient in acid mine drainage. The results showed that although the overall network characteristics remained similar, the structural variation was significantly lower at trait levels. The higher conserved individual node topological properties at trait level rather than at species level indicated that the responses of diverse traits remained relatively consistent even though different species played key roles under different environmental conditions. Additionally, the randomization tests revealed that it could not reject the null hypothesis that species-based correlations were random, while the tests suggested that correlation patterns of traits were non-random. Furthermore, relationships between trait-based network characteristics and environmental properties implied that trait-based networks might be more useful in reflecting the variation of ecosystem function. Taken together, our results suggest that deterministic trait-based community assembly results in greater conservation of network interaction, which may ensure ecosystem function across environmental regimes, emphasizing the potential importance of measuring the complexity and conservation of network interaction in evaluating the ecosystem stability and functioning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...