Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3522, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316500

RESUMEN

Quantum circuits interact with the environment via several temperature-dependent degrees of freedom. Multiple experiments to-date have shown that most properties of superconducting devices appear to plateau out at T ≈ 50 mK - far above the refrigerator base temperature. This is for example reflected in the thermal state population of qubits, in excess numbers of quasiparticles, and polarisation of surface spins - factors contributing to reduced coherence. We demonstrate how to remove this thermal constraint by operating a circuit immersed in liquid 3He. This allows to efficiently cool the decohering environment of a superconducting resonator, and we see a continuous change in measured physical quantities down to previously unexplored sub-mK temperatures. The 3He acts as a heat sink which increases the energy relaxation rate of the quantum bath coupled to the circuit a thousand times, yet the suppressed bath does not introduce additional circuit losses or noise. Such quantum bath suppression can reduce decoherence in quantum circuits and opens a route for both thermal and coherence management in quantum processors.

2.
Phys Rev Lett ; 129(18): 180504, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36374697

RESUMEN

The ability to control microwave emission from a spin ensemble is a requirement of several quantum memory protocols. Here, we demonstrate such ability by using a resonator whose frequency can be rapidly tuned with a bias current. We store excitations in an ensemble of rare-earth ions and suppress on demand the echo emission ("echo silencing") by two methods: (1) detuning the resonator during the spin rephasing, and (2) subjecting spins to magnetic field gradients generated by the bias current itself. We also show that spin coherence is preserved during silencing.

3.
Sci Adv ; 6(51)2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33355127

RESUMEN

A major issue for the implementation of large-scale superconducting quantum circuits is the interaction with interfacial two-level system (TLS) defects that lead to qubit parameter fluctuations and relaxation. Another major challenge comes from nonequilibrium quasiparticles (QPs) that result in qubit relaxation and dephasing. Here, we reveal a previously unexplored decoherence mechanism in the form of a new type of TLS originating from trapped QPs, which can induce qubit relaxation. Using spectral, temporal, thermal, and magnetic field mapping of TLS-induced fluctuations in frequency tunable resonators, we identify a highly coherent subset of the general TLS population with a low reconfiguration temperature ∼300 mK and a nonuniform density of states. These properties can be understood if the TLS are formed by QPs trapped in shallow subgap states formed by spatial fluctutations of the superconducting order parameter. This implies that even very rare QP bursts will affect coherence over exponentially long time scales.

4.
Sci Rep ; 9(1): 12539, 2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31467310

RESUMEN

The microwave properties of nano-scale structures are important in a wide variety of applications in quantum technology. Here we describe a low-power cryogenic near-field scanning microwave microscope (NSMM) which maintains nano-scale dielectric contrast down to the single microwave photon regime, up to 109 times lower power than in typical NSMMs. We discuss the remaining challenges towards developing nano-scale NSMM for quantum coherent interaction with two-level systems as an enabling tool for the development of quantum technologies in the microwave regime.

5.
Nat Commun ; 9(1): 1143, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29559633

RESUMEN

Noise and decoherence due to spurious two-level systems located at material interfaces are long-standing issues for solid-state quantum devices. Efforts to mitigate the effects of two-level systems have been hampered by a lack of knowledge about their chemical and physical nature. Here, by combining dielectric loss, frequency noise and on-chip electron spin resonance measurements in superconducting resonators, we demonstrate that desorption of surface spins is accompanied by an almost tenfold reduction in the charge-induced frequency noise in the resonators. These measurements provide experimental evidence that simultaneously reveals the chemical signatures of adsorbed magnetic moments and highlights their role in generating charge noise in solid-state quantum devices.

6.
Phys Rev Lett ; 118(5): 057703, 2017 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-28211716

RESUMEN

An on-chip electron spin resonance technique is applied to reveal the nature and origin of surface spins on Al_{2}O_{3}. We measure a spin density of 2.2×10^{17} spins/m^{2}, attributed to physisorbed atomic hydrogen and S=1/2 electron spin states on the surface. This is direct evidence for the nature of spins responsible for flux noise in quantum circuits, which has been an issue of interest for several decades. Our findings open up a new approach to the identification and controlled reduction of paramagnetic sources of noise and decoherence in superconducting quantum devices.

7.
Sci Rep ; 5: 17176, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26597218

RESUMEN

Near field Scanning Microwave Microscopy (NSMM) is a scanning probe technique that non-invasively can obtain material properties on the nano-scale at microwave frequencies. While focus has been on developing room-temperature systems it was recently shown that this technique can potentially reach the quantum regime, opening up for applications in materials science and device characterization in solid state quantum information processing. In this paper we theoretically investigate this new regime of NSMM. Specifically we show that interaction between a resonant NSMM probe and certain types of two-level systems become possible when the NSMM probe operates in the (sub-) single photon regime, and we expect a high signal-to-noise ratio if operated under the right conditions. This would allow to detect single atomic material defects with energy splittings in the GHz range with nano-scale resolution, provided that individual defects in the material under study are well enough separated. We estimate that this condition is fulfilled for materials with loss tangents below tan δ ∼ 10(-3) which holds for materials used in today's quantum circuits and devices where typically tan δ < 10(-5). We also propose several extensions to a resonant NSMM that could improve sensitivity and functionality also for microscopes operating in a high power regime.

8.
Phys Rev Lett ; 111(13): 137002, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-24116809

RESUMEN

We study a superconducting charge qubit coupled to an intensive electromagnetic field and probe changes in the resonance frequency of the formed dressed states. At large driving strengths, exceeding the qubit energy-level splitting, this reveals the well known Landau-Zener-Stückelberg interference structure of a longitudinally driven two-level system. For even stronger drives, we observe a significant change in the Landau-Zener-Stückelberg pattern and contrast. We attribute this to photon-assisted quasiparticle tunneling in the qubit. This results in the recovery of the qubit parity, eliminating effects of quasiparticle poisoning, and leads to an enhanced interferometric response. The interference pattern becomes robust to quasiparticle poisoning and has a good potential for accurate charge sensing.

9.
Rev Sci Instrum ; 84(2): 023706, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23464217

RESUMEN

We report on the design and performance of a cryogenic (300 mK) near-field scanning microwave microscope. It uses a microwave resonator as the near-field sensor, operating at a frequency of 6 GHz and microwave probing amplitudes down to 100 µV, approaching low enough photon population (N ∼ 1000) of the resonator such that coherent quantum manipulation becomes feasible. The resonator is made out of a miniaturized distributed fractal superconducting circuit that is integrated with the probing tip, micromachined to be compact enough such that it can be mounted directly on a quartz tuning-fork, and used for parallel operation as an atomic force microscope (AFM). The resonator is magnetically coupled to a transmission line for readout, and to achieve enhanced sensitivity we employ a Pound-Drever-Hall measurement scheme to lock to the resonance frequency. We achieve a well localized near-field around the tip such that the microwave resolution is comparable to the AFM resolution, and a capacitive sensitivity down to 6.4 × 10(-20) F/Hz, limited by mechanical noise. We believe that the results presented here are a significant step towards probing quantum systems at the nanoscale using near-field scanning microwave microscopy.

10.
Phys Rev Lett ; 84(25): 5836-9, 2000 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-10991067

RESUMEN

We study single-electron transport in quench-condensed bismuth films. By lateral confinement, we select a specific cluster of about 10(3) atoms and use tunneling barriers that appear naturally during thin-film formation. A remarkable reversible increase of the sample conductance up to 5 times was found as the temperature was lowered from 11 to 4 K. We attribute this effect to a spontaneous distortion of the cluster shape and discuss its relation to a phase transition predicted for free metallic clusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA